
Department of Physics & Astronomy
Experimental Particle Physics Group

Kelvin Building, University of Glasgow,
Glasgow, G12 8QQ, Scotland

Telephone: +44 (0)141 339 8855 Fax: +44 (0)141 330 5881

GLAS-PPE/2003-11
August 2003

Next-Generation EU DataGrid Data Management Services

Diana Bosio, James Casey, Akos Frohner, Leanne Guy, Peter Kunszt,
Erwin Laure, Sophie Lemaitre, Levi Lucio, Heinz Stockinger, Kurt Stockinger

CERN, European Organization for Nuclear Research,
CH-1211 Geneva 23, Switzerland.

William Bell, David Cameron, Gavin McCance, Paul Millar
University of Glasgow, Glasgow, G12 8QQ, Scotland

Joni Hahkala, Niklas Karlsson, Ville Nenonen, Mika Silander
Helsinki Institute of Physics, P.O. Box 64, 00014

University of Helsinki, Finland

Olle Mulmo, Gian-Luca Volpato
Swedish Research Council, SE-103 78 Stockholm, Sweden

Giuseppe Andronico
INFN Catania, Via S. So�a, 64, I-95123 Catania, Italy

Federico DiCarlo
INFN Roma, P.le Aldo Moro, 2, I-00185 Roma, Italy

Livio Salconi
INFN Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy

Andrea Domenici
DIIEIT, via Diotisalvi, 2, I-56122 Pisa, Italy

Ruben Carvajal-Schia�no, Floriano Zini
ITC-irst, via Sommarive 18, 38050 Povo, Trento, Italy

Abstract

We describe the architecture and initial implementation of the next-generation of Grid Data Management
Middleware in the EU DataGrid (EDG) project. The new architecture stems from our experience together
with the user requirements gathered during the two years of running our initial set of Grid Data Management
Services. All of our new services are based on the Web Service technology paradigm, very much in line with
the emerging Open Grid Services Architecture (OGSA). We have modularized our components and invested
a great amount of e�ort in developing secure, extensible and robust services, starting from the design
but also using a streamlined build and testing framework. Our service components are: Replica Location
Service, Replica Metadata Service, Replica Optimization Service, Replica Subscription and high-level replica
management. The service security infrastructure is fully GSI-enabled, hence compatible with the existing
Globus Toolkit 2-based services; moreover, it allows for �ne-grained authorization mechanisms that can be
adjusted depending on the service semantics.

1 Introduction

The EU DataGrid project [?] (also referred to as EDG in this article) is now in its third and �nal year. Within
the data management work package we have developed a second generation of data management services that
will be deployed in EDG release 2.x. Our �rst generation replication tools (GDMP, edg-replica-manager etc.)
provided a very good base and input, which we reported on in [?, ?]. The experience we gained in the �rst
generation of tools (mainly written in C++), is directly used in the second generation of data management
services that are based on web service technologies and mainly implemented in Java.

The basic design concepts in the second generation services are as follows:

� Modularity:

The design needs to be modular and allow for easy plug-ins and future extensions.

In addition, we should use generally agreed standards and do not rely on vendor speci�c solutions.

� Evolution:

Since OGSA is an upcoming standard that is most likely to be adapted by several Grid services in the
future, the design should allow for an easy adoption of the OGSA concept. It is also advisable to use a
similar technology.

In addition, the design should be independent of the underlying operating system as well as relational
database managements system that are used by our services.

Having implemented the �rst generation tools mainly in C++, the technology choices for the second gener-
ation services presented in this article are as follows:

� Java based servers are used that host web services (mainly Jakarta's Tomcat as well as Oracle 9iAS for
certain applications).

� Interface de�nitions in WSDL

� Client stubs for several programming languages (Java, C/C++) through SOAP using AXIS for Java and
gSOAP for C++ interfaces.

� Persistent service data is stored in a relational database management system. We mainly use MySQL for
general services that require open source technology and Oracle for more robust services.

The entire set of data management services consists of the following parts:

� Replication service framework : This service framework is the main part of our data management
services and is described in detail in Section??. It basically consists of an overall replica management
system that uses several other services such as the Replica Location Service, Replica Optimization service
etc.

� SQL Database Service (Spit�re) : Spit�re provides a means to access relational databases from the
Grid.

� Java Security Package : All of our services have very strict security requirements. The Java security
package provides tools that can be used in Grid services such as our replication services.

All these components are discussed in detail in the following sections and thus also outline the paper
organization.

2 Replication Service Framework 'Reptor'

In the following section we �rst give an architectural overview of the entire replication framework and then
discuss individual services (Replica Location Service, Replica Optimization Service etc.) in more detail.

1

2.1 General Overview of Replication Architecture

Figure ?? presents the user's perspective of the main components of a replica management system for which
we have given the code-name `Reptor'. This design, which �rst was discussed in [?], represents an evolution of
the original design presented in [?, ?]. Several of the components have already been implemented and tested in
EDG (see shaded components) whereas others (in white) are still in the design phase and might be implemented
in the future.

Reptor has been realized as a modular system that provides easy plugability of third party components.
Reptor de�nes the minimal interface third party components have to provide. According to this design the
entire framework is provided by the Replica Management Service which acts as a logical single entry point
to the system and interacts with the other components of the systems as follows:

 Processing

AccessHistory

ReplicaInitiation

Replica
Management

Service

�����������
�����������
�����������
�����������

Collection Optimization

Core

Sessions Consistency

Subscription

Transport

MetaData
Catalog

Service
Replica Location

Security

User

Replica Selection

Figure 1: Reptor's main design components.

� The Core module provides the main functionality of replica management, namely replica creation, dele-
tion, and cataloging by interacting with third party modules such as transport and replica and metadata
catalog services.

� The goal of the Optimization component (implemented as a service) is to minimize �le access times by
pointing access requests to appropriate replicas and pro-actively replicating frequently used �les based on
gathered access statistics.

� The Security module manages the required user authentication and authorization, in particular, issues
pertaining to whether a user is allowed to create, delete, read, and write a �le.

� Collections are de�ned as sets of logical �lenames and other collections.

� The Consistency module maintains consistency between all replicas of a given �le, as well as between
the meta information stored in the various catalogs.

� The Session component provides generic check-pointing, restart, and rollback mechanisms to add fault
tolerance to the system.

� The Subscription service allows for a publish-subscribe model for replica creation.

We decided to implement the Replica Management Service and the core module functionality on the client
side in the Replica Manager Client, henceforth referred to as theReplica Manager . The other subservices
and APIs are modules and services in their own right, allowing for a multitude of deployment scenarios in a
distributed environment.

2

One advantage of such a design is that if a subservice is unavailable, the Replica Manager can still provide
all the functionality that does not make use of that particular service. Also, critical service components may
have more than one instance to provide a higher level of availability and to avoid service bottlenecks.

A detailed description of the implemented components and services can be found in the following subsections
as well as in the original design in [?].

2.2 Interaction with Services

The Replica Manager needs to interact with many external services as well as internal ones, such as the the
Information Service and transport mechanisms like GridFTP servers [?]. Most of the components required by
the Replica Manager are independent services, hence appropriate client stubs satisfying the interface need to
be provided by the service. By means of con�guration �les the actual component to be used can be speci�ed
and Java dynamic class loading features are exploited for making them available at execution time.

To date, the Replica Manager has been tested using the following components:

� Replica Location Service (RLS) [?]: used for locating replicas in the Grid and assigning physical �le names.

� Replica Metadata Catalog (RMC): used for querying and assigning logical �le names.

� Replica Optimization Service (ROS): used for locating the best replica to access.

� R-GMA : an information service provided by EDG: The Replica Manager uses R-GMA to obtain informa-
tion about Storage and Computing Elements [?].

� Globus C based libraries as well as CoG[?] providing GridFTP transport functionality.

� The EDG network monitoring services: EDG (in particular WP7) provides these services to obtain statis-
tics and network characteristics.

The implementation is mainly done using the Java J2EE framework and associated web service technologies
(the Apache Tomcat servlet container, Jakarta Axis , etc.). In more detail, we use client/server architectures
making SOAP Remote Procedure Call (RPC) over HTTPS. The basic component interaction is given in Fig-
ure ?? and will also explained in a few more details in the following sub sections. For more details on web
service choices refer to Section??.

Replica Optimization

Storage
Element

Replica Location Service

Storage
Element
Monitor

Network Monitor

Replica Manager Client

Information ServiceResource Broker

User Interface

Figure 2: Interaction of Replica Manager with other Grid components.

For the user, the main entry point to the Replication Services is through the client interface that is provided
via a Java API as well as a command line interface, theedg-replica-manager module. For each of the main
components in Figure??, the Reptor framework provides the necessary interface. For instance, the functionality
of the core module includes mainly the �le copy and cataloging process and is handled in the client library with
the respective calls to the Transport and Replica Catalog modules.

3

2.3 Replica Location Service (RLS)

The Replica Location Service (RLS) is the service responsible for maintaining a (possibly distributed) catalog
of �les registered in the Grid infrastructure. For each �le there may exist several replicas. This is due to the
need for geographically distributed copies of the same �le, so that accesses from di�erent points of the globe
may be optimized (see section on the Replica Optimization Service). Obviously, one needs to keep track of the
scattered replicas, so that they can be located and consistently updated.

As such, the RLS is designed to store one-to-many relationships between (Grid Unique Identi�ers (GUIDs)
and Physical File Names (PFNS). Since many replicas of the same �le may coexist (with di�erent PFNs) we
identify them as being replicas of the same �le by assigning to them the same unique identi�er (the GUID).

The RLS architecture encompasses two logical components - the LRC (Local Replica Catalog) and the RLI
(Replica Location Index). The LRC stores the mappings between GUIDs and PFNs on a per-site basis whereas
the RLI stores information on where mappings exist for a given GUID. In this way, it is possible to split the
search for replicas of a given �le in two steps: in the �rst one the RLI is consulted in order to determine which
LRCs contain mappings for a given GUID; in the second one, the speci�c LRCs are consulted in order to �nd
the PFNs one is interested in.

It is however worth mentioning that the LRC is implemented to work in standalone mode, meaning that it
can act as a full RLS on its own if such a deployment architecture is necessary. When working in conjunction
with one (or several) RLIs, the LRC provides periodic updates of the GUIDs it holds mappings for. These
updates consist of bloom �lter objects, which are a very compact form of representing a set, in order to support
membership queries [?].

The RLS currently has two possible database backend deployment possibilities: MySQL and Oracle9i.

2.4 Replica Metadata Catalog Service (RMC)

Despite the fact that the RLS already provides the necessary functionality for application clients, the GUID
unique identi�ers are di�cult to read and remember. The Replica Metadata Catalog (RMC) can be considered
as another layer of indirection on top of the RLS that provides mappings between Logical File Names (LFNs)
and GUIDs. The LFNs are user de�ned aliases for GUIDs - many LFNs may exist for one GUID.

Furthermore, the RMC is also capable of holding metadata about the original physical �le represented by
the GUID (e.g. size, date of creation, owner). It is also possible for the user to de�ne speci�c metadata and
attach it to a GUID or to an LFN. The purpose of this mechanism is to provide to users and applications a way
of querying the �le catalog based on a wide range of attributes. The possibility of gathering LFNs as collections
and manipulating these collections as a whole has already been envisaged, but is not yet implemented.

As for the RLS, the RMC supports MySQL and Oracle9i as database backends.

2.5 Replica Optimization Service (ROS)

The goal of the optimization service is to select the best replica with respect to network and storage access
latencies. It is implemented as a light-weight web service that gathers information from the EDG network
monitoring service and the EDG storage element service about the respective data access latencies.

In [?] we de�ned the APIs getNetworkCosts and getSECosts for interactions of the Replica Manager with
the Network Monitoring and the Storage Element Monitor. These two components monitor the network tra�c
and the access tra�c to the storage device respectively and calculate the expected transfer time of a given �le
with a speci�c size.

In the EU DataGrid Project, Grid resources are managed by the meta scheduler of WP1, the Resource
Broker [?]. One of the goals of the Resource Broker is to decide on which Computing Element the jobs should
be run such that the throughput of all jobs is maximized. Assuming highly data intensive jobs, a typical
optimization strategy could be to select the least loaded resource with the maximum amount of locally avaliable
data. In [?] we introduced the Replica Manager API getAccessCost that returns the access costs of a speci�c
job for each candidate Computing Element. The Resource Broker can then take this information provided by
the Replica Manager to schedule each job to its optimal resources.

The interaction of the Replica Manager with the Resource Broker, the Network Monitor and the Storage
Element Monitor is depicted in Figure ??.

2.6 Replica Subscription Service

The Replica Subscription Service (RSS) provides automatic replication based on a subscription model. The
basic design is based on our �rst generation replication tool GDMP (Grid Data Mirroring Package) [?].

4

3 SQL Database Service: Spit�re

Spit�re [?] provides a means to access relational databases from the Grid. This service has been provided by
our work package for some time and was our �rst service that used the web service paradigm. Thus, we give
more details about its implementation in Section ?? since many of the technology choices for the replication
services explained in the previous section are based on choices also made for Spit�re.

3.1 Spit�re Overview

The SQL Database service (named Spit�re) permits convenient and secure storage, retrieval and querying of
data held in any local or remote RDBMS. The service is optimized for metadata storage. The primary SQL
Database service has been re-architected into a standard web service. This provides a platform and language
independent way of accessing the information held by the service. The service exposes a standard interface in
WSDL format, from which client stubs can be built in most common programming languages, allowing a user
application to invoke the remote service directly. The interface provides the common SQL operations to work
with the data. Pre-built client stubs exist for the Java, C and C++ programming languages. The service itself
has been tested with the MySQL and Oracle databases.

The earlier SQL Database service was primarily accessed via a web browser (or command line) using pre-
de�ned server-side templates. This functionality, while less
exible than the full web services interface, was
found to be very useful for web portals, providing a standardized view of the data. It has therefore been
retained and re-factored into a separate SQL Database browser module.

3.2 Component Description and Details about Web Service Design

There are three main components to the SQL Database service: the primary server component, the client(s)
component, and the browser component. Applications that have been linked to the SQL Database client library
communicate to a remote instance of the server. This server is put in front of a RDBMS (e.g. MySQL), and
securely mediates all Grid access to that database. The browser is a standalone web portal that is also placed
in front of a RDBMS.

The server is a fully compliant web service implemented in Java. It runs on Apache Axis inside a Java
servlet engine (currently we use the Java reference servlet engine, Tomcat, from the Apache Jakarta project).
The service mediates the access to a RDBMS that must be installed independently from the service. The
service is reasonably non-intrusive, and can be installed in front of a pre-existing RDBMS. The local database
administrator retains full control of the database back-end, with only limited administration rights being exposed
to properly authorized grid users.

The web services client, at its most basic, consists of a WSDL service description that describes fully the
interface. Using this WSDL description, client stubs can be generated automatically in the programming
language of choice. We provide pre-built client stubs for the Java, C and C++ programming languages. These
are packaged as Java JAR �les and static libraries for Java and C/C++ respectively.

The browser component is a server side component that provides web-based access to the RDBMS. It
provides the functionality of the previous version of the SQL Database service. This service does not depend
on the other components and can be used from any web browser. The browser component is implemented as
a Java servlet. In the case where it is installed together with the primary service, it is envisaged that both
services will be installed inside the same servlet engine.

The design of the primary service is similar to that of the prototype Remote Procedure Call GridDataService
standard discussed in [?], and indeed, in
uenced the design of the standard. It is expected that the SQL Database
service will eventually evolve into a prototype implementation of the RPC part of this GGF standard. However,
to maximise the usability and portability of the service, we chose to implement it as a plain web service, rather
than just an OGSA service. The architecture of the service has been designed so that it will be trivial to
implement the OGSA speci�cation at a later date.

The communication between the client and server components is over the HTTP(S) protocol. This maximises
the portability of the service, since this protocol has many pre-existing applications that have been heavily
tested and are now very robust. The data format is XML, with the request being wrapped using standard
SOAP Remote Procedure Call. The interface is designed around the SQL query language. The communication
between the user's web browser and the SQL Database Browser service is also over HTTP(S).

The server and browser components (and parts of the Java client stub) make use of the common Java
Security module as described in Section??. The secure connection is made over HTTPS (HTTP with SSL or
TLS).

Both the server and browser have a service certi�cate (they can optionally make use of the system's host
certi�cate), signed by an appropriate CA, which they can use to authenticate themselves to the client. The

5

client uses their GSI proxy to authenticate themselves to the service. The user of the browser service should
load their GSI certi�cate into the web browser, which will then use this to authenticate the user to the browser.

A basic authorisation scheme is de�ned by default for the SQL Database service, providing administrative
and standard user functionality. The authorisation is performed using the subject name of the user's certi�cate
(or a regular expression matching it). The service administrator can de�ne a more complex authorisation scheme
if necessary, as described in the security module documentation.

4 Security

The EDG Java security package covers two main security areas, authentication authorization. Authentication
assures that the entity (user, service or server) at the other end of the connection is who it claims to be.
Authorization decides what the entity is allowed to do.

The aim in the security package is always to make the software as
exible as possible and to take into
account the needs of both EDG and industry to make the software usable everywhere. To this end there
has been some research into similarities and possibilities for cooperation with for example Liberty Alliance,
which is a consortium developing standards and solutions for federated identity for web based authentication,
authorization and payment.

4.1 Authentication

The authentication mechanism is an extension of the normal Java SSL authentication mechanism. The mutual
authentication in SSL happens by exchanging public certi�cates that are signed by trusted certi�cate authorities
(CA). The user and the server prove that they are the owners of the certi�cate by proving in cryptographic
means that they have the private key that matches with the certi�cate.

In Grids the authentication is done using GSI proxy certi�cates that are derived from the user certi�cate.
This proxy certi�cate comes close to ful�lling the PKIX [?] requirement for valid certi�cate chain, but does not
fully follow the standard. This causes the SSL handshake to fail in the conforming mechanisms. For the GSI
proxy authentication to work the SSL implementation has to be nonstandard or needs to be changed to accept
them.

The EDG Java security package extends the Java SSL package. It

� accepts the GSI proxies as the authentication method

� supports GSI proxy loading with periodical reloading

� supports OpenSSL certi�cate-private key pair loading

� supports CRLs with periodical reloading

� integrates with Tomcat

� integrates with Jakarta Axis SOAP framework

The GSI proxy support is done by �nding the user certi�cate and making special allowances and restrictions
to the following proxy certi�cates. The allowance is that the proxy certi�cate does not have to be signed by a
CA. The restriction is that the distinguished name (DN) of the proxy certi�cate has to start with the DN of
the user certi�cate (e.g. `C=CH, O=cern, CN=John Doe'). This way the user cannot pretend to be someone
else by making a proxy with DN `C=CH, O=cern, CN=Jane Doe'. The proxies are short lived, so the program
using the SSL connection may be running while the proxy is updated. For this reason the user credentials (for
example the proxy certi�cate) can be made to be reloaded periodically.

OpenSSL saves the user credentials using two �les, one for the user certi�cate and the other for the private
key. With the EDG Java security package these credentials can be loaded easily.

The CAs periodically release lists of revoked certi�cates in a certi�cate revocation list (CRL). The EDG
Java security package supports this CRL mechanism and even if the program using the package is running,
these lists can be periodically and automatically reloaded into the program by setting the reload interval.

The integration to Jakarta Tomcat (a Java web server and servlet container) is done with an interface class
and to use it only the Jakarta Tomcat con�guration �le has to be set up accordingly.

The Jakarta Axis SOAP framework provides an easy way to change the underlying SSL socket implementa-
tion on the client side. Only a simple interface class was needed and to turn it on a system variable has to be
set while calling the Java program. In the server side the integration was even simpler as Axis runs on top of
Tomcat and Tomcat can be set up as above.

6

Due to issues of performance, many of the services described in this document have equivalent clients written
in C++. To this end, there are several C++ SOAP clients that have been written based on the gSOAP library.
In order to provide the same authentication and authorization functionality as in the corresponding Java SOAP
clients, an accompanying C library is being developed for gSOAP. When ready, it is to provide support for
mutual authentication between SOAP clients and SOAP servers, support for the coarse-grained authorization
as implemented in the server end by the Authorization Manager (described below) and veri�cation of both
standard X509 and GSI style server and server proxy certi�cates.

4.2 Coarse grained authorization

The EDG Java security package only implements the coarse grained authorization. The coarse grained autho-
rization decision is made in the server before the actual call to the service and can make decisions such as `what
kind of access does this user have to that database table' or `what kind of access does this user have to the
�le system'. The �ne grained authorization that answers the question `what kind of access does this user have
to this �le' can only be handled inside the service, because the actual �le to access is only known during the
execution of the service. The authorization mechanism is positioned in the server before the service.

In the EDG Java security package the authorization is implemented as role based authorization. Currently
the authorization is done in the server end and the server authorizes the user, but there are plans to do mutual
authorization where also the client end checks that the server end is authorized to perform the service or to
save the data. The mutual authorization is especially important in the medical �eld where the medical data
can only be stored in trusted servers.

The role based authorization happens in two stages, �rst the system checks that the user can play the role
he requested (or if there is a default role de�ned for him). The role the user is authorized to play is then
mapped to a service speci�c attribute. The role de�nitions can be the same in all the services in the (virtual)
organization, but the mapping from the role to the attribute is service speci�c. The service speci�c attribute
can be for example a user id for �le system access of database connection id with precon�gured access rights.
If either step fails, the user is not authorized to access the service using the role he requested.

There are two modules to interface to the information
ow between the client and the service; one for normal
HTTP web tra�c and the other for SOAP web services. The authorization mechanism can attach to other
information
ows by writing a simple interface module for them.

In a similar fashion the authorization information that is used to make the authorization decisions can be
stored in several ways. For simple and small installation and for testing purposes the information can be a
simple XML �le. For larger installations the information can be stored into a database and when using the
Globus tools to distribute the authorization information, the data is stored in a text �le that is called the
gridmap �le. For each of these stores there is a module to handle the speci�cs of that store and to add a new
way to store the authorization information. Only a interface module needs to be written. When the virtual
organization membership service (VOMS) is used the information provided by the VOMS server can be used
for the authorization decisions and all the information from the VOMS is parsed and forwarded to the service.

4.3 Administration web interface

The authorization information usually ends up being rather complex, and maintaining that manually would
be di�cult, so a web based administration interface was created. This helps to understand the authorization
con�guration, eases the remote management and by making management easier improves the security.

5 Conclusions

The second generation of our data management services has been designed and implemented based on the
web service paradigm. In this way, we have a
exible and extensible service framework and are thus prepared
to follow the general trend of the upcoming OGSA standard that is based on web service technology. Since
interoperability of services seems to be a key feature in the upcoming years, we believe that our approach used in
the second generation of data management is compatible with the need for service interoperability in a rapidly
changing Grid environment.

Our design choices have been as follows: we aim for supporting robust, highly available commercial products
(like Oracle/DB and Oracle/Application Server) as well as standard open source technology (MySQL, Tomcat,
etc.).

The �rst experience in using the new generation of services shows that basic performance expectations are
met. During this year, the services will be deployed on the EDG testbed (and possibly others): this will show
the strength and the weaknesses of the services.

7

6 Acknowledgments

This work was partially funded by the European Commission program IST-2000-25182 through the EU DataGrid
Project.

References

[1] W. Allcock, J. Bester, J. Bresnahan, A. Chernevak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Ques-
nal, S. Tuecke; "Data Management and Transfer in High Performance Computational Grid Environments."
Parallel Computing, 2002.

[2] W. H. Bell, D. G. Cameron, L. Capozza, P. Millar, K. Stockinger, F. Zini, Design of a Replica Optimisation
Framework, Technical Report, DataGrid-02-TED-021215, Geneva, Switzerland, December 2002.

[3] William Bell, Diana Bosio, Wolfgang Hoschek, Peter Kunszt, Gavin McCance, and Mika Silander. \Project
Spit�re - Towards Grid Web Service Databases". Technical report, Global Grid Forum Informational Doc-
ument, GGF5, Edinburgh, Scotland, July 2002.

[4] Ann Chervenak, Ewa Deelman, Ian Foster, Leanne Guy, Wolfgang Hoschek, Adriana Iamnitchi, Carl Kessel-
man, Peter Kunszt, Matei Ripenu, Bob Schwartzkopf, Heinz Stocking, Kurt Stockinger, Brian Tierney ,
\Giggle: A Framework for Constructing Scalable Replica Location Services",Proceedings of SC2002 Confer-
ence, November 2002

[5] DataGrid WP1, De�nition of Architecture, Technical Plan and Evaluation Criteria for Scheduling, Resource
Management, Security and Job Description, Technical Report, EU DataGrid Project. Deliverable D1.2,
September 2001.

[6] European DataGrid project (EDG): http://www.eu-datagrid.org

[7] L. Guy, P. Kunszt, E. Laure, H. Stockinger, K. Stockinger \Replica Management in Data Grids", Technical
Report, GGF5 Working Draft, Edinburgh Scotland, July 2002

[8] Wolfgang Hoschek, Javier Jaen- Martinez, Peter Kunszt, Ben Segal, Heinz Stockinger, Kurt
Stockinger, Brian Tierney, "Data Management (WP2) Architecture Report", EDG Deliverable 2.2,
http://edms.cern.ch/document/332390

[9] Wolfgang Hoschek, Javier Jean-Martinez, Asad Samar, Heinz Stockinger, Kurt Stockinger. Data Manage-
ment in an International Data Grid Project. 1st IEEE/ACM International Workshop on Grid Computing
(Grid'2000) . Bangalore, India, Dec 17-20, 2000.

[10] R. Housley et.al. \Internet X.509 Public Key Infrastructure Internet X.509 Public Key Infrastructure, RFC
3280, The Internet Society April 2002, http://www.ietf.org/rfc/rfc3280.txt

[11] Amy Krause, Susan Malaika, Gavin McCance, James Magowan, Norman W. Paton, Greg Riccardi \Grid
Database Service Speci�cation", Global Grid Forum 6, Edinburgh, 2002.

[12] Gregor von Laszewski, Ian Foster, Jarek Gawor, Peter Lane: \A Java Commodity Grid Kit", Concurrency
and Computation: Practice and Experience, 13(8-9), 2001.

[13] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, B. Tierney. "File and Object Replication in
Data Grids." Proceedings of the Tenth International Symposium on High Performance Distributed Com-
puting (HPDC-10), IEEE Press, August 2001

[14] Heinz Stockinger, Flavia Donno, Erwin Laure, Shahzad Muza�ar, Giuseppe Andronico, Peter Kunszt,
Paul Millar. \Grid Data Management in Action: Experience in Running and Supporting Data Management
Services in the EU DataGrid Project", Computing in High Energy Physics (CHEP 2003), La Jolla, California,
March 24 - 28, 2003.

[15] B. Bloom \Space/time tradeo�s in hash coding with allowable errors", CACM, 13(7):422-426, 1970.

8

