
LCG Data Management: From EDG to EGEE

Jean-Philippe Baud2, James Casey2, Sophie Lemaitre2,
Caitriana Nicholson1, David Smith2, Graeme Stewart1

1 University of Glasgow, Glasgow, G12 8QQ, Scotland

2 CERN, European Organisation for
Nuclear Research, 1211 Geneva, Switzerland

1 Introduction

The Large Hadron Collider (LHC) at CERN,
the European Organisation for Nuclear Research,
will produce unprecedented volumes of data
when it starts operation in 2007. To provide
for its computational needs, the LHC Comput-
ing Grid (LCG) is being deployed as a world-
wide computational grid service, providing the
middleware upon which the physics analysis for
the LHC will be carried out.

Data management middleware will be a key
component of the LCG, enabling users to anal-
yse their data without reference to the complex
details of the computing environment.

In this paper we review the performance tests
of the LCG File Catalog (LFC) and make com-
parisons with other data management catalogs.
We also survey the deployment status of the LFC
within the LCG.

2 EDG Replica Location
Service

The European Data Grid (EDG) produced
data management middleware consisting of the
Replica Metadata Catalog (RMC) and the Local
Replica Catalog (LRC). Together these formed
the Replica Location Service (RLS), which was
deployed in the LCG in 2003-4.

The 2004 series of LHC experiment data chal-
lenges were the first to use the LCG-2 set of mid-
dleware tools in a realistic environment [1]. Feed-
back from the experiment groups after the data
challenges highlighted various problems and lim-
itations, as well as differences between the ex-
pected and actual usage patterns.

During these challenges it became apparent
that the file catalog infrastructure was too slow
both for inserts and for queries [2]. Queries in-

volving both the LRC and RMC were particu-
larly slow [3]. Missing functionality identified in-
cluded lack of support for bulk operations and
transactions. It also became clear that queries
were generally based on metadata attributes and
were not simple lookups of a file’s physical loca-
tion. On the other hand, users did not use the
web services approach in the way which had been
anticipated when the EDG components were de-
veloped. They were implemented such that a re-
mote procedure call (RPC) was performed for
each low-level operation; users, however, wanted
to send higher-level or multiple commands in a
single RPC. As this was not available, the cu-
mulative overheads from a large number of low-
level RPCs led to considerable loss of perfor-
mance. Also, although a C++ API was avail-
able, command-line tools were available only in
Java which led to added loss of performance due
to the overhead in starting up the Java Virtual
Machine with each call.

3 LCG File Catalog

To address the problem of the EDG RLS the
LHC Computing Grid has designed a new data
management component, the LCG File Catalog
(LFC). The LFC moves away from the Replica
Location Service model used in previous LCG
releases, towards a hierarchical filesystem model
and provides additional functionality.

The LFC has a completely different architec-
ture from the RLS framework. Like the EDG cat-
alog, it contains a GUID (Globally Unique Iden-
tifier) as an identifier for a logical file, but unlike
the EDG catalog it stores both logical and phys-
ical mappings for the file in the same database.
This speeds up operations which span both sets
of mappings [4]. It also treats all entities as files
in a UNIX-like filesystem. The API is designed to
mimic a UNIX filesystem API, with calls which



are intuitive to the user.
The main entities of the LFC design are shown

in Figure 1. There is a global hierarchical names-

File Metadata

Logical File Name (LFN)

GUID

System Metadata (Size,
Ownership, Checksum,
ACL..)

User Metadata

User Defined Metadata

File Replica

Storage File Name

Storage Host

Symlinks

Link Name

Figure 1: Components of the LFC.

pace of Logical File Names (LFNs) which are
mapped to the GUIDs. GUIDs are mapped to
the physical locations of file replicas in storage
(Storage File Names, SFNs). System attributes
of the replicas (such as creation time, last ac-
cess time, file size and checksum) are stored as
attributes on the LFN, but user-defined meta-
data is restricted to one field. Multiple LFNs
per GUID are allowed as symbolic links.

Transactions and cursors are supported for
handling large query results, with bulk opera-
tion support planned. As there is only one cat-
alog, transactions are possible across both LFN
and SFN operations, which was impossible with
the EDG RLS. In case of momentary loss of con-
nection to the catalog, timeouts and retries are
supported. Authentication is by Grid Security
Infrastructure (GSI), which will allow single sign-
on to the catalog with users’ Grid certificates.

The LFC has been intergrated with the Pool
Of Persistant Objects for LHC (POOL) frame-
work.

4 LFC Performance Tests

4.1 Test Setup

Performance tests of the LFC were written in C,
using the LFC’s API. For each test the client
forked the required number of threads. A test
harness was written in perl to run each batch of
tests and collate the results.

The LFC server was running on a dual 1GHz
PIII machine with 512MB of RAM, connected
to an Oracle database server running on a dual
2.4GHz P4 machine. Clients ran on a single
processor PIII and all machines were networked
through 100Mb switches.

4.2 Insert

The mean time to insert a single entry into the
LFC was measured as the number of entries in
the catalogue was increased, for a single client
thread. Starting from a low number of entries in
the LFC new entries were inserted and the mean
of every 1000 entries was then taken and plotted
as shown in Figure 2.

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500 4000

x 10
4Number of entries in LFC

M
ea

n 
in

se
rt

 ti
m

e 
(m

s)

Figure 2: Mean insert time with increasing cat-
alogue size.

There is very little dependence of insert time
on the number of entries in the catalogue. Up to
about 5 million entries, the mean insert time is
about 22 ms, after which it increases slightly to
a plateau of about 27 ms. Ocassionaly delays on
the network are interpreted as the cause of the
long tail on the distribution.

4.3 Transactions

In the LFC, the transaction methods are exposed
in the API so that the user can explicitly start a
transaction, perform a number of operations then
commit to the database (or abort and roll back
if there is an error). To test transaction perfor-
mance, the number of operations inside a single
transaction was varied and the mean insert time
measured for different numbers of client threads
and 20 server threads. Figure 3 shows the results.

This shows that explicitly using transactions
increases the insert time by at least a factor of
two; with a single client thread at the optimal
number of operations per transaction, the mean
insert time is about 54 ms. Analysis of transac-
tions indicates that performace loss occurs in the
Oracle database.

4.4 Inserting with chdir

An important feature of the LFC is the ability to
change directories using a chdir operation, and
in particular to change into the current working



1

10

10 2

10 3

1 10 10
2

10
3

Inserts/Commit

M
ea

n 
In

se
rt

 T
im

e 
(m

s)

1 thread
2 threads
5 threads

10 threads
20 threads
50 threads

Figure 3: Mean insert time when using trans-
actions, with increasing number of inserts per
transaction.

directory. When performing a large number of
operations within the same directory, it should
be faster to change into that directory before per-
forming all the operations, as permissions would
only be checked once.

The mean of 5000 inserts was measured for in-
creasing numbers of subdirectories in the path
of the LFN to be inserted, with and without
performing the directory change, and for various
numbers of client threads.

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100

Number of subdirectories

M
ea

n 
tim

e 
pe

r 
in

se
rt

 (
m

s)

1 thread
2 threads
5 threads
10 threads
20 threads
50 threads

Figure 4: Mean insert time with and without
chdir, with increasing number of subdirectories
in the path.

From Figure 4, we see that the chdir is work-
ing as intended. When the absolute path name
is used the mean insert time increases fairly lin-
early with the number of subdirectories in the
path. When chdir is used, the mean insert time
is independent of the number of subdirectories.
The results show that the performance gain from
using chdir is significant.

4.5 Queries

Querying the catalogue for entries will be the
most common operation after the initial produc-
tion phase at the LHC so query performance is
very important. In the following tests, a query is
defined as finding a given LFN in the catalogue
and performing a stat() operation on it. This
returns all the associated metadata such as file
size, checksum, last modification time and so on,
as well as checking permissions.

The query rate was measured with an increas-
ing number of client threads. As in the insert
rate and delete rate experiments, the server was
running with 20 threads and there were about 1
million entries in the LFC and as Figure 5 shows,
the pattern of results is also similar. A maximum
rate of about 275 queries per second is reached,
which is slightly higher than the insertion rate.

0

50

100

150

200

250

300

350

400

2 4 6 8 10 12 14 16 18 20
Number of Threads

Q
ue

rie
s 

pe
r 

se
co

nd

Figure 5: Query rate for increasing number of
client threads, LFC with 1 million entries.

4.6 Reading directories

Reading through files in a directory is an impor-
tant use case. The total time to perform such
a readdir operation was therefore measured for
increasing numbers of files in a directory, from
1 to 10000, with the results shown in Figure 6.
The time it takes to read the whole directory
is directly proportional to the number of files in
the directory, until the number of client threads
matches the number of server threads. At this
point, the time spent by a thread waiting for an-
other thread to finish dominates, until the direc-
tory is sufficiently large (about 2000 files) for the
read time to dominate.

5 Comparison with Globus
and EDG File Catalogs

The EGG and Globus Replica Location Services
(RLS) are built on a different model to that of



1

10

10 2

10 3

10 4

10 5

1 10 10
2

10
3

10
4

Number of files in directory

T
ot

al
 r

ea
d 

tim
e 

(m
s)

1 thread
2 threads
5 threads
10 threads
20 threads

Figure 6: Total read time with increasing direc-
tory size, for varying number of client threads,
20 server threads.

the LFC. Local file catalogs (LRCs) store infor-
mation local to a site, and publish this informa-
tion to a higher level catalog, the Globus Replica
Location Index (RLI). (N.B. the EDG RLS made
use of a Replica Metatdata Catalog, RMC, and
was never deployed with an RLI)

It should be emphasised that these different
catalog designs address different issues, the RLS
catalogs can be deployed in a distributed fashion
(which can scale better), however this comes at
the expense of making queries involving both cat-
alogs very slow [3]. The LFC also offers features
considered essential by the LHC community, such
as cursors and transactions, not offered by the
RLS catalogs.

5.1 Inserts

It is considered essential to maintain data in-
tegrity for LHC experiments, which requires
flushing the database after each insert. In this
case the Globus LRC can achieve 84 inserts per
second [5]. For the EDG RLS the best insert time
is 17ms [6], corresponting to 60 inserts per sec-
ond for a single thread. Tests with the LFC show
insert rates rising from 75/s for a single client up
to 220/s for multiple client threads.

5.2 Queries

Queries on the Globus RLS are extremely rapid,
reaching rates of 2000/s [5]. EDG single thread
queries are slower, 60/s [6]. The LFC can query
at 275/s, however this performs a full stat on
an entry and checks permissions along the direc-
tory path, where as the Globus RLS only does
a lookup. Analysis of LHC use suggests that
lookups alone are rare [3] and that returning
metadata is essential.

6 Deployment Status

The LCG File catalog has alreay been deployed
as a production file catalog by ZEUS at DESY,
SEE-GRID in Greece and TW Grid in Taiwan. A
pre-production service for LHC experiments has
been installed at CERN to enable performance
testing and integration with experiment frame-
works. LHCb will use a central catalog at CERN
and Atlas are evaluating the LFC for local cata-
loging within LCG.

As part of LCG Service Challenge 3 LFC has
been installed at all Tier 1 and participating Tier
2 centres.

7 Conclusions

The LCG File Catalog is a replacement for the
EDG RLS system. It offers the features required
by users but unavailable in other replica manage-
ment systems.

Performance measurements show the robust-
ness and scalability of the LFC up to many mil-
lions of entries and hundreds of client threads.

The LFC is now deployed as a production ser-
vice by several VOs, and is undergoing perfor-
mace and integration tests by LHC experiments.

References

[1] A. Delgado Peris, et al. LCG-2 User Guide.
Technical Report CERN-LCG-GEDIS-
454439, CERN, Geneva, Switzerland,
September 2004.

[2] A. Fanfani et al. Distributed Computing Ex-
periences in CMS DC04. In CHEP, Inter-
laken, Switzerland, September 2004.

[3] M. Girone et al. Experience with POOL in
the LCG Data Challenges of Three LHC Ex-
periments. In CHEP, Interlaken, Switzerland,
September 2004.

[4] J-P. Baud and J. Casey. Evolution of LCG-
2 Data Management. In CHEP, Interlaken,
Switzerland, September 2004.

[5] A. Chervenak et al. Performance and Scal-
ability of a Replica Location Service. In
HPDC-13, Honolulu, Hawaii, USA, 2004.

[6] D. Cameron. Replica Management and Op-
timisation for Data Grids. PhD Thesis, Uni-
versity of Glasgow, 2005.


