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Abstract

Two possible measurements of the CKM angle γ at LHCb are evaluated: from the decay

mode B0
d → D−π+, and from the combined analysis of the decay modes B0

d → D−π+ and

B0
s → D−

s K+ under the conditions of U-spin symmetry. It is shown that the analysis of time

dependent decay rate asymmetries in B0
d → D−π+ can result in a precision of ∼ 10◦ on γ

after five years of data taking under certain theoretical assumptions. The combined extraction

of γ from the decay modes B0
d → D−π+ and B0

s → D−
s K+ is seen to allow an unambiguous

extraction of γ, with a precision of ∼ 5◦ after five years of data taking.
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Table 1: A summary of the yields, purities, mistag (ω), mistag precision (σω)
, and tagging efficiency (εtag) in the channels B0

d → D∓π± and B0
s → D∓

s K±,
taken from [BNSVH07, Gli07]. The annual yield refers to 2fb−1 of data taking.

Decay Channel Annual yield B/S ω σω (absolute, 2 fb−1) εtag

B0
d → D∓π± 1340k 0.22 35% 1% 50%

B0
s → D∓

s K± 6.2k 0.7 30% 1% 60%

1 Introduction

One of the key physics goals of the LHCb experiment is to make a precise measurement of γ,
currently the least well constrained [ea05b] angle in the CKM unitary triangle. The channels
B0

d → D∓π± and B0
s → D∓

s K± allow for a theoretically clean extraction of γ, which is expected
to be robust against new physics and thus provide a baseline measurement. Discrepancies between
this determination of γ and measurements using strategies sensitive to new physics contributions
will be a signature of non-Standard Model processes. The reconstruction of these channels at LHCb
has been documented in [Gli07, BNSVH07], and the selection yields, purities, and expected tagging
performance are given in Table 1. Yields are quoted in multiples of nominal LHCb running years,
equivalent to 2fb−1 of data taking, throughout this document. The quoted tagging performance
comes from a dedicated study [CLM07] carried out with the full LHCb Monte Carlo simulation.

The “conventional” extraction of γ from the channel B0
s → D∓

s K±, in which γ is extracted
from a fit to the decay rate asymmetries between B0

s and B0
s decaying to the same final state, has

been documented in [CMR07]. Such an extraction is also possible for the channel B0
d → D∓π±.

These measurements will, however, suffer from an ambiguity on the extracted value of γ. In general
there will be an eightfold ambiguity, although this can be reduced to a twofold one in the case of
B0

s → D∓
s K± through the use of untagged events. Therefore, an alternative approach has been

recently proposed [Fle03, Wil05], which exploits the U-spin symmetry between these decay modes
and allows for an essentially unambiguous extraction of γ.

This note presents Monte Carlo studies performed to explore the viability of the conventional
measurement of γ from the channel B0

d → D∓π± at LHCb, as well as the viability of a U-spin
analysis of the channels B0

d → D∓π± and B0
s → D∓

s K±. The term “full Monte Carlo” will refer
to Monte Carlo events generated using PYTHIA [SMS06] and processed with the full GEANT4
[All06] LHCb detector simulation. The term “toy Monte Carlo” will refer to Monte Carlo data
containing only the B parameters relevant for the γ fit; the parameters for individual toy Monte
Carlo events are generated from distributions measured on full Monte Carlo events.

The note is structured as follows: this section has motivated the study. Section 2 develops the
mathematical formalism needed to describe CP violation in neutral B decays. Section 3 discusses
the theoretical uncertainties associated with the “conventional” extraction of γ from the channel
B0

d → D∓π±. Section 4 lists the current measurements of γ from this decay mode at the B factories.
Section 5 introduces U-spin symmetry. Section 6 presents the “conventional” measurement of γ
from the channel B0

d → D∓π±. Section 7 presents the measurement of γ from the channels
B0

d → D∓π± and B0
s → D∓

s K± under conditions of U-spin symmetry. Section 8 discusses the
prospects for a γ measurement at LHCb from these and related channels.

2 CP violation in neutral B decays

B0
d,s mesons produced at the LHC are created in one of two distinct flavour eigenstates

B0
d,s =

(

b, [d, s]
)

, B0
d,s =

(

b, [d, s]
)

, (1)

however their propagation must be described using mass eigenstates which do not correspond to
these flavour eigenstates. In particular, the mass eigenstates |BL〉 and |BH〉 can be written as a
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linear combination of the flavour eigenstates

|BL,H〉 = p
∣

∣B0
d,s

〉

± q
∣

∣

∣
B0

d,s

〉

, (2)

where |p|2 + |q|2 = 1. Since the CP operator transforms one flavour eigenstate into another,
the mass eigenstates in the absence of CP violation are equivalent to the eigenstates of the CP
operator.

CP violation in the decays B0
d → D∓π± and B0

s → D∓
s K±, collectively written as B0

q → Dquq,

is measured from the rate asymmetries for the B0
q and B0

q mesons to decay into the same final
state. These rate asymmetries can be parameterized as

A (t) ≡
Γ

(

B0
q → Dquq

)

(t) − Γ
(

B
0

q → Dquq

)

(t)

Γ
(

B0
q → Dquq

)

(t) + Γ
(

B
0

q → Dquq

)

(t)
=

C
(

B0
q → Dquq

)

cos (∆Mqt) + S
(

B0
q → Dquq

)

sin (∆Mqt)

cosh (∆Γqt/2) − A∆Γ (Bq → Dquq) sinh (∆Γqt/2)
, (3)

where q stands for the d or s quark, and uq is a pion or kaon. ∆Mq is the mass difference between
the BL and BH eigenstates in the Bq system. ∆Γq represents the decay width difference between
the “heavy” and “light” Bq mass eigenstates, negligibly small for the B0

d system. The terms
which are relevant in the CP violation study are C,S, and A∆Γ, referred to collectively as the
CP-observables. They can be written as

C
(

B0
q → Dquq

)

≡ Cq =
1 − |ξq |2
1 + |ξq |2

; (4)

S
(

B0
q → Dquq

)

≡ Sq =
2Im(ξq)

1 + |ξq |2
; (5)

A∆Γ

(

B0
q → Dquq

)

=
2Re (ξq)

1 + |ξq |2
. (6)

The dependence of these CP-observables on γ comes through the parameter ξ:

ξq = − (−1)
L

e−i(φq+γ)

[

1

xqeiδq

]

. (7)

Here, φq is the mixing phase between B0
q and B

0

q , δq is a strong phase difference between the decay

channels B0
q → Dquq and B0

q → Dquq which is not CP-violating, and xq represents the level of

interference between the B0
q and B

0

q decaying into the same final state. The term (−1)
L
, where L is

the angular momentum of the Dquq system, determines the sign of the sine term in the asymmetry.
For the decays considered in this study, L = 0.

The parameter xq can be thought of as the scale at which the decay B0
q → Dquq is sensitive

to CP violation; the bigger xq , the more sensitive the decay channel. The terms xq and δq are

related to the matrix elements Mq and Mq , of the decays B0
q → Dquq and B0

q → Dquq respectively,
through

aqe
iδq ∝ Mq

M q

, (8)

where aq is given by

as ≡ xs

Rb
, (9)

ad ≡ −
(

1 − λ2

λ2

)

xd

Rb
, (10)
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and Rb is given by

Rb ≡
(

1 − λ2

2

)

1

λ

∣

∣

∣

∣

Vub

Vcb

∣

∣

∣

∣

, (11)

where λ = 0.22 is the sine of the Cabibbo angle, and Vub,cb are elements of the CKM matrix. There
are analogous CP-observables for the other asymmetry, from a state Bq to Dquq. These will be
labelled Cq ,Sq and A∆Γ, but are governed by the same three equations above, with ξq replacing
ξq :

ξq = − (−1)
L

e−i(φq+γ)
[

xqe
iδq

]

. (12)

Finally, the CP-observables C and S can be written out explicitly in this notation:

Cq = −
[

1 − x2
q

1 + x2
q

]

; (13)

Cq = +

[

1 − x2
q

1 + x2
q

]

; (14)

Sq = (−1)
L

[

2xq sin (φq + γ + δq)

1 + x2
q

]

; (15)

Sq = (−1)L

[

2xq sin (φq + γ − δq)

1 + x2
q

]

. (16)

3 Values of xd and xs

The sensitivity to γ in the decays B0
q → Dquq depends on the expected interference between the

tree level diagrams for a B0
q or B

0

q meson to decay into the same final state, parameterized by xq .
It is therefore important to determine the likely size of xq .

A recent BaBar [ea08] analysis of the decays B0
d → D∓

s π± has estimated xd from the relation

xd = tan (θC)

√

B
(

B0 → D+
s π−

)

B
(

B0 → D−
s π+

)

fD

fDs

, (17)

where θC is the Cabibbo angle, and the term fD

fDs
is the ratio of decay constants for the D and Ds.

The result is
xd = 0.0175± 0.0014 (stat) ± 0.0009 (syst) ± 0.0010 (th) , (18)

where the quoted theoretical error (∼ 6%) comes from the assigned uncertainty on the knowledge
1) of fD

fDs
from lattice QCD. This does not, however account for the entire theoretical error on xd,

as acknowledged in the BaBar analysis: “Other SU(3) breaking effects are believed to affect [xd]
by (10-15) %”. As discussed in [Baa07], the three major sources of theoretical uncertainty on xd

are rescattering diagrams, non-factorizable effects, and W-exchange amplitudes. The contribution
from rescattering diagrams can be parameterized as a multiplicative correction factor Ri,

xd = tan (θC)

√

B
(

B0 → D+
s π−

)

B
(

B0 → D−
s π+

)

fD

fDs

Ri, (19)

and the size of this factor can be calculated by fitting to the strong-interaction rescattering matrix.
The uncertainty on this fit can be estimated by comparing the rescattered branching ratios for
a variety of modes with the measured branching ratios. The theoretical error from the rescat-
tering correction is 1%, and therefore negligible. The errors due to non-factorizable effects and
W-exchange amplitudes are estimated at 9% (Gaussian) and 5% (flat) respectively. For the pur-
pose of fitting to γ, it is necessary to calculate an overall error on xd from the individual statistical,

1)Given the recent disagreement between theory and experiment regarding the value of fDs
, this error is likely to

increase.
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systematic, and theoretical errors. The approach taken here will be to add these errors in quadra-
ture, resulting in a total error of σxd

≈ 20%. This error can, however, be expected to improve in
the future. The statistical errors on the branching ratios will improve as more results are presented
by the B-factories and LHCb, while the theoretical errors may be better understood by repeating
the analysis of [Baa07] with more recent experimental inputs. By the time LHCb finishes taking
data, it can be hoped that the value xd will be known to better than 10%.

An analogous line of reasoning to that for xd leads to an expected value of 0.37 for xs, which
has the significant advantage of being large enough to fit directly from the CP asymmetries in the
channel B0

s → D∓
s K±. The precision with which this parameter will be measured is given in Table

5.

4 Current B factory measurements

Both BaBar [ea06b] and Belle [ea06c] have constrained sin (2β + γ) from the decay modes B0 →
D(∗)±π∓, and in BaBar’s case also from B0 → D±ρ∓. BaBar places a combined constraint
of sin (2β + γ) > 0.64 (0.40) at the 68% (90%) confidence level. Belle places a constraint of
sin (2β + γ) > 0.44 (0.52) at the 68% confidence level from the D∗±π∓ (D±π∓) modes.

5 U-spin symmetry

Since xd cannot be fitted for, it will have to be externally constrained, and such constraints bring
undesirable theoretical errors into the determination of γ. It is possible, however, to eliminate this
parameter from the fits altogether by combining the analysis of the channels B0

d → D∓π± with
that of B0

s → D∓
s K±. This relies on U-spin symmetry, which is an SU(2) subgroup of the flavour

SU(3) symmetry. Under U-spin symmetry, the (d,s) pair of quarks is a doublet, in a similar way
to (u,d) under isospin. As an example of this mechanism, recall that under isospin, the pions are
considered as isospin eigenstates of the same hadron

π+
(

ud
)

≡ I3 = +1; (20)

π0
(

uu− dd
)

/
√

2 ≡ I3 = 0; (21)

π− (ud) ≡ I3 = −1. (22)

Although the I3 component of isospin varies, I = 1 for all three pions. It is empirically observed
that the strong interactions of the pions are almost identical. Since the three pions are related by
the exchange of u and d quarks, isospin symmetry implies that strong interactions are unchanged
under the exchange of u and d quarks. U-spin symmetry functions in the same way, but between
d and s quarks. Hence the B0

s (bs) and B0
d

(

bd
)

mesons, which are related by the exchange of a d
quark for an s quark, are identical under U-spin, and their strong interactions are postulated to be
identical also. In particular, parameters associated with the strong force, such as the phases δd,s,
have the same value for U-spin related decays.

U-spin is broken by the difference between the s and d quark masses, in the same way that
isospin is broken by the difference between the d and u quark masses. Since the s quark is heavier
than the u quark, U-spin breaking effects are greater than isospin breaking effects. On the other
hand, there is no charge difference between the s and d quarks, so that U-spin symmetry, unlike
isospin, is not broken by electroweak penguins. In addition, it has been argued in [SS07] that U-spin
is expected to be a better symmetry than SU(3) when analyzing neutral B meson decays, because
it does not require any assumptions about the relative amplitudes of different (tree, penguin,
annihilation) decay topologies.
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6 Conventional extraction of γ from B0
d → D∓π±

6.1 Fitting method

The angle γ can be extracted from the time dependent decay rate asymmetries introduced in
Equation 3. An unbinned log-likelihood fit is performed to the asymmetries using ROOT [BR97]
and the minimization package MINUIT [JR75]. The log-likelihood function to be maximized is

ln L =
∑

all B0
d
→D−π+

ln (pSd
(ti))

+
∑

all B
0

d→D−π+

ln (1 − pSd
(ti))

+
∑

all B
0

d→D+π−

ln
(

pSd
(ti)

)

+
∑

all B0
d
→D+π−

ln
(

1 − pSd
(ti)

)

. (23)

pSd
(ti) is the probability to find a B0

d → D−π+ event at time ti rather than a B
0

d → D−π+ event,

and pSd
(ti) is the probability to find a B

0

d → D+π− event at time ti rather than a B0
d → D+π−

event. In terms of the asymmetries defined in Equation 3, pSd
and pSd

are given by

pSd,Sd
(t) =

ASd,Sd
(t) + 1

2
. (24)

In order to extract γ from the asymmetries, it is necessary to determine the value of Cd, Sd, and
Sd. However, Cd depends on xd, and xd is too small to fit for the decay channel B0

d → D∓π±;
it will have to be determined from external sources. This uncertainty in the knowledge of xd is
accounted for by multiplying the likelihood function with a Gaussian

Lconstrained = L · e
−

(xestim
d

−xfit
d )2

2σ2
xd (25)

where xestim
d is the assumed value of xd as given by external sources, xfit

d is the fit parameter, and
σxd

is the uncertainty associated with xestim
d .

6.2 Including detector effects

In order to add realism to the study, the following effects were considered

• Time resolution: The reconstructed decay time in this channel will be subject to an exper-
imental resolution. The resolution measured in [Gli07] was a double Gaussian with a core
resolution of 33 fs. For the sake of simplicity, however the resolution in this toy Monte Carlo
study was modelled by a single Gaussian with a resolution of 40 fs.

• Acceptance function: The impact parameter and flight separation cuts used in the trigger
and the offline channel selection will introduce a bias against events with a low B lifetime,
referred to as a proper time acceptance.

• Mistag: The misidentification of B0
d mesons as B

0

d and vice versa dilutes the asymmetry.
In the majority of time-dependent CP analyses, the mistag rate is determined from control
channels, which can introduce systematic uncertainties in the fitting. In the case of B0

d →
D−π+, it will be shown that the mistag rate can be fitted from the asymmetries themselves,
thus eliminating this potential source of error.

• Background: A background to signal level of B
S = 0.22 is assumed within a 3σ mass window

(±50 MeV), taken from the optimized selection in [Gli07].

These are now discussed in turn.
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t1        0.0142± 0.4953 
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Figure 1: Fitted lifetime acceptance for signal B0
d → D+π− events passing the trigger and offline

selection. The terms t1, t2, t3 and t4 correspond to the functional form t1·t2t3

t4+t2t3

6.2.1 Time resolution

After an event has been generated, the time resolution is applied to its proper lifetime. If the
smeared lifetime becomes negative, the event is discarded. During the fitting, the time resolution
is ignored, enabling any systematic biases associated with it to be estimated.

6.2.2 Acceptance function

The acceptance function used to generate events in the toy Monte Carlo is taken from a fit to full
Monte Carlo events as shown in Figure 1. The fitted function has the empirical form

PA(t) = 0.5 · (1.7t)2.2

1 + (1.7t)2.2
.

The acceptance function is not used when fitting, since it cancels out in the expression for the
asymmetries. The overall normalization factor of 0.5 is a legacy of how this acceptance was
calculated and does not affect the fit results.

6.2.3 Mistag

A mistag fraction ω will lead to B0
d mesons being wrongly identified as B

0

d mesons, and hence the
decay rates for these two flavours of B0 to decay into the same final state will be mixed together.
Hence the apparent decay rate, RωD− , of the decays tagged as B0

d into D−π+ is given by

RωD−(t) = (1 − ω)RD−(t) + ωRD−(t), (26)

and similarly for the other rates. The measured asymmetry is now diluted

Aω(t) = (1 − 2ω)A(t), (27)
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compared to A(t), the asymmetry for the case of perfect tagging.

6.2.4 Background

The background is assumed to be independent of the decay considered, so that a background D−π+

or D+π− combination is equally likely to be identified as coming from a B0
d as it is to be identified

as coming from a B
0

d. It is assumed that the acceptance function will be the same for signal and
background, and that the background will follow the e−Γt distribution. These assumptions are
justified by the fact that the major component of the background found in this channel [Gli07] are
misidentified decays of B hadrons, which will have similar kinematics to the signal. In any case,
the high purity of this channel means that the background is not likely to be a significant source
of statistical error. Therefore, in the presence of a background to signal ratio of B

S , the apparent
decay rate, RB

S
D−(t), of events tagged as B0

d into D−π+ is given by:

RB
S

D− (t) = RD− (t) +
B

S
· 1

2

(

RD− (t) + RD− (t)
)

, (28)

and similarly for the other rates. The measured asymmetry becomes

AB
S
(t) =

1

1 + B/S
A(t). (29)

6.3 The full asymmetry expression

The measured asymmetry now becomes

Am(t) =
1 − 2ω

1 + B/S
A(t) = DA(t), (30)

where A(t) is again the asymmetry in the absence of any detector effects, and

D =
1 − 2ω

1 + B/S
, (31)

represents the combined dilution of the asymmetry caused by the mistag and background.
Written out explicitly, using Equation 3, this is

Am (t) = D
C

(

B0
q → Dquq

)

cos (∆Mqt) + S
(

B0
q → Dquq

)

sin (∆Mqt)

cosh (∆Γqt/2) − A∆Γ (Bq → Dquq) sinh (∆Γqt/2)
, (32)

and an analogous expression can be written down for Am (t).

6.4 Fitting with detector effects included

In order to fit correctly in the presence of these detector effects, it is necessary to determine the
background and mistag levels. The background is normally determined from the mass sidebands,
and the mistag from control channels. In this case, the dilution due to detector effects, given by
the ratio 1−2ω

1+B/S , can be fitted directly alongside the CP violating parameters, since the four decay

rates provide four observables and xd is constrained from external sources. It is not possible to fit
Sd, Sd, Cd, Cd, xd, and the dilution at the same time because the dilution would be maximally
correlated with the sine and cosine terms in the asymmetry. Fixing the cosine terms (with xd and
its associated uncertainty as an input to the fit) allows the dilution to be disentangled from the
magnitude of the sine term. In principle this means that the systematic errors associated with
poor external knowledge of the mistag rate and a badly understood background under the mass
peak can be avoided. Because B0

d → D+π− is expected to have a high purity, the background level
was assumed to be well understood in this study, allowing the mistag rate to be fitted alongside
Sd, Sd.
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Table 2: Values of parameters and constants used in the toy Monte Carlo.

Parameter Value

ω 35%
xd 0.0175
S
B 4.6

∆m 0.507 ps−1

Γ 0.653 ps−1

PA(t) measured on MC signal events

It is also possible to do the reverse, and fit to the background level in the circumstances where
the mistag rate is well understood from external sources. Both approaches offer potential gains in
other analyses. For example, comparing the background level under the peak as extrapolated from
the sidebands to the fitted background level from the asymmetries could offer valuable hints on
the presence of peaking background under the signal, which could cause a systematic bias in the
fitted B0

d lifetime. If the mistag is sufficiently well understood from the control channels, it may
be possible to divide the signal region in bins of mass, and fit to the background level in each bin
separately from them, thus building the shape of the background without any recourse to Monte
Carlo data. Alternatively, if the background level can be well understood through other means, a
fit to the mistag may allow B0

d → D−π+ to be used as a control channel for other channels with
similar kinematics.

The final fit parameters chosen are2)
(

ω, xd, Sd/xd, Sd/xd

)

. Table 2 lists the values of the
various constants and parameters used as input in the toy simulation. For clarity, and since the
two are trivially related, all precisions will be quoted on Sd, not Sd/xd.

6.5 Precisions on the CP-observables and ω

The precision with which Sd and Sd are fitted is independent of their input values in the case
where xd is known perfectly. Imperfect knowledge of xd introduces correlations between Sd and
Sd which break this invariance. If σSd

is the uncorrelated error on Sd when xd is perfectly known,
the correlated error is given by

σcorr
Sd

=

√

(σSd
)2 +

(

Sd
σxd

xd

)2

. (33)

This error now depends on the input values of Sd and Sd, and by extension γ, δd, and φd. Equation
33 has been empirically verified by comparing the results of log-likelihood fits performed with
Equations 23 and 25. Instead of quoting

[

σSd
, σSd

]

for a given
[

Sd, Sd, σxd

]

, only the uncorrelated

errors will be quoted. The correlated error can then be computed for any given
[

Sd, Sd, σxd

]

using
Equation 33.

Table 3 summarises the expected precisions on the CP-observables Sd, Sd, and ω after one and
five years of data taking, for the case where the mistag is fitted, and where the mistag is fixed to
its generator value. When fitting to the mistag, it is assumed that the background level is known
exactly. This does not affect the precision on γ since the dilution, 1−2ω

1+B/S , could in any case have

been fitted to instead, losing direct information on the mistag but preserving the precision on the
CP-observables.

Fitting to the mistag causes a ∼ 7% increase in
[

σSd
, σSd

]

. The error on ω is independent of

the values of φd − γ and δd. After one year (2 fb−1) it will be

σω = 0.1%, (34)

2)Sd/xd are chosen instead of Sd in order to separate fully the CP-observables from the externally constrained
term xd in the fit.
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Table 3: A summary of the expected statistical errors on the CP-observables Sd, Sd,
and ω in the channel B0

d → D−π+, for one and five years of data taking, and where
σxd

= 0. The relevant pull plots are unbiased in all cases, with a width of 1.

ω Sd Sd

σ1y 0.1% 1.05 · 10−2 1.05 · 10−2

σ5y 0.05% 0.47 · 10−2 0.47 · 10−2

σ1y without fit to mistag N/A 0.98 · 10−2 0.98 · 10−2

σ5y without fit to mistag N/A 0.44 · 10−2 0.44 · 10−2

and after five years (10 fb−1)
σω = 0.05%. (35)

The error on ω is also independent of the error on xd. Although the nature of systematic errors
associated with extracting the mistag with an imperfect knowledge of the background are unknown
at present, the statistical precision is better than the expected precision from control channels
quoted in Table 1.

6.6 Statistical error

The dependence of the statistical error on mistag, background, and the signal yield NS is

σSd
∝ 1

1 − 2ω

√

1 + B/S

NS
. (36)

Furthermore, the lifetime acceptance biases the selection against low-lifetime events. These events
are where the cosine terms in the asymmetries dominate, but the sensitivity to γ comes from the
sine terms in the asymmetries, which are ordinarily small in magnitude compared to the cosine
terms. It follows that the acceptance will reduce the difference in magnitudes between the sine
and cosine terms in the asymmetries, and this is seen to improve the precision with which the
parameters Sd and Sd can be fitted for a given number of events. The errors in the presence of the
assumed acceptance function, relative to the errors when no acceptance function is present, are 10%
smaller in the absence of mistag and background, and 30% smaller if mistag and background are
included in the fit. If it is possible to achieve the same yield and purity using either lifetime-biasing
or lifetime-unbiased cuts, for example with impact parameter rather than transverse momentum
cuts, the selection using lifetime-biasing cuts will provide a B0

d sample with an intrinsically higher
sensitivity to γ.

6.7 Systematic errors

Any systematic bias in the fitted value of a parameter can be shown on a pull plot, where the pull
of observable x with fitted value xfit and fitted error of σx is given by

pullx =
x − xfit

σx
. (37)

For correctly fitted x, the pull plot should have a mean of 0 and a width of 1. A deviation from 0
in the mean indicates a systematic bias in the fitting, while a width different from 1 indicates that
the fitting is not estimating the errors correctly. It is particularly interesting to consider possible
systematic biases associated with the inclusion of the mistag rate as a free parameter in the fit,
and the fact that the fit ignores resolution effects on the measured B lifetime.
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Figure 2: Pull plot on Sd when fitting with the
mistag as a free parameter.

Figure 3: The value of the fitted mistag, for an
input value of 0.35.

6.7.1 Mistag

Figure 2 shows the pull plots on the fitted parameter Sd in the case when the mistag is fitted,
without any external input, from the asymmetries; the pull plots are clearly unbiased. Figure 3
shows the fitted value of the mistag. The one year precision on the value of the mistag of 0.1%,
as given in Equation 34, underlines the potential of this channel to itself serve as a mistag control
channel for other analyses. In the event that the background of this channel is poorly understood
it is always possible to fit to the overall dilution instead, losing the mistag information while
protecting against systematic errors on the extracted value of γ. Any asymmetry in the mistag
rate of B0 and B0 mesons will be determined from control channels.

6.7.2 Time resolution and acceptance function

The systematic error caused by ignoring the time resolution when fitting to the asymmetries is
[Rad01] given by

σsyst,σt
≈ ∆mΓσ2

τ

2xd
≈ 1.0%, (38)

as a fraction of the fitted parameter itself. All detector effects were included in the pull study, and
the value of xd was assumed to be known exactly. The time resolution is introduced when generating
the toy Monte Carlo, but no attempt is made to account for it when fitting, and the asymmetry
fit is performed as if perfect proper time resolution were present. The mean value of the one year
fit is biased by (−0.06± 0.04)σ1y, while that of the five year fit is biased by (−0.24± 0.04)σ5y,
where σ1y,5y is the appropriate statistical error. Since the statistical error decreases after five years
of data taking, it is expected that the bias will increase as a fraction of the statistical error, and
the results are consistent with a constant absolute bias due to the time resolution. The systematic
error resulting from ignoring the time resolution in the fits will therefore not be negligible when
compared to the statistical error on Sd and Sd.

It is in principle possible to account for the presence of time resolutions in the fit3), which will
reduce any observed bias. Also, it is empirically observed that the bias due to the time resolution
is reduced by approximately a factor of 2 in the absence of an acceptance function.

A bias of around one fifth of the statistical precision on Sd will propagate into an equivalent
bias on the value of γ.

6.8 Ambiguities in the extracted value of γ

In order to extract γ from the CP asymmetries given the measured values of the CP-observables, it
is necessary to eliminate the hadronic phase, δq , from the equations for the CP-observables Sd, Sd.

3)See, for example, a similar fit in the channel B0
s → D∓

s K± [CMR07].
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Figure 4: A plot of the ambiguous solutions for γ and δd for true γ = 60◦ and δd = 40◦. Note that
δqcd ≡ δd on the vertical axis.

Table 4: A list of the ambiguous solutions for γ and δd, in the case
when the “true” values are γ = 60◦ and δd = 40◦.

γ −177◦ −154◦ −120◦ −97◦ 3◦ 26◦ 60◦ 83◦

δd 163.5◦ 140◦ −140◦ −163◦ −17◦ −40◦ 40◦ 17◦

It will be advantageous to define orthogonal combinations of the CP-observables C, C, Sd, Sd

〈Cq〉+ ≡ Cq + Cq

2
= 0;

〈Cq〉− ≡ Cq − Cq

2
=

1 − x2
q

1 + x2
q

;

〈Sq〉+ ≡ Sq + Sq

2
= + (−1)

L

[

2xq cos δq

1 + x2
q

]

sin (φq + γ) ;

〈Sq〉− ≡ Sq − Sq

2
= − (−1)L

[

2xq sin δq

1 + x2
q

]

cos (φq + γ) . (39)

The term sin (φd − γ) can now be extracted from

sin (φd − γ)
2

=
1

2

[

(

1 + 〈Sd〉2− − 〈Sd〉2+
)

±
√

(

1 + 〈Sd〉2− − 〈Sd〉2+
)

− 4 〈Sd〉2−

]

. (40)

Hence the formula corresponds to a fourfold solution for sin (φd − γ), and therefore an eightfold
solution for γ itself. Because φd is known to such a high precision [ea06a] a measurement of φd − γ
can be interpreted as a measurement of γ. Figure 4 shows the situation for an input value of
γ = 60◦, δd = 40◦, with the ambiguous solutions for γ and δd listed in Table 4. Notice that the γ
values associated with some of the solutions are too close to be resolved without external knowledge
of δd, or a precision on each individual solution of less than 10◦. Such degenerate solutions lead to
a greater error on γ than that associated with each individual solution.

6.9 Precision on γ

It is now time to calculate an expected precision on γ from the precisions on the CP-observables
quoted in Table 3. This is done by drawing contour plots in δd - γ space which are then projected
onto the γ axis. It is desirable to develop a procedure which can be used when the actual fit
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is eventually performed with real data. It is assumed that a fit has been performed to the CP
asymmetries; the fitted values of the CP-observables, their uncertainties, and σxd

are the inputs
from which a precision on γ is computed. The following procedure is used:

1. The starting point are the values of the CP-observables and their uncertainties, obtained
from a fit to the CP asymmetries, and σxd

. These will be referred to as the “measured”
CP-observables.

2. The CP-observables Sd, Sd corresponding to each point in δd - γ space are calculated.

3. For each point, Equation 33 is used to calculate the correlated errors on the CP-observables.

4. 100 toy experiments are generated using the correlated errors for each point in δd - γ space.
Each toy experiment gives “fitted” values of Sd, Sd, whose Gaussian separation from the
measured values is computed. This results in two constraints on the values of γ and δd, one
corresponding to Sd and one corresponding to Sd.

5. The constraints for Sd, Sd are multiplied together to obtain the overall constraint in δd - γ
space for a given measured value of Sd,Sd, and σxd

.

6. The overall PDF is then projected onto the γ axis.

The final result is a likelihood plot in γ, from which the 1σ, 2σ, etc. precisions on γ can be
calculated. This procedure will now be illustrated for two interesting values of γ and δd. In both
cases, σxd

is assumed to be 20% after one year of data taking, and 10% after five. Also, it is
assumed that φd is known exactly.

6.9.1 γ = 60◦ and δd = 10◦

The first scenario corresponds to the factorization limit, in which the strong phase δd is small. The
contour plots after one year of data taking are shown in Figure 5, with the final γ likelihood in the
bottom right hand corner. As can be seen, the eight ambiguous solutions group together in two
areas of parameter space, each containing four solutions which are statistically indistinguishable.
The central value of γ suffers from a large bias (∼ 20◦). Looking at the combined contour plot in
the bottom left of Figure 5, it is clear that this bias is caused by the near degeneracy in γ of two
of the “fake” solutions around 40◦.

The contour plots after five years of data taking are shown in Figure 6. The bias has been
reduced, and looking at the combined constraint plot it can be seen that the degenerate solutions
are beginning to be statistically separated from each other. Quoting a central value and error on γ
is futile in this situation, but the likelihood can still contribute to the global knowledge on γ when
combined with other measurements which do not suffer from the same degeneracy problems (for
example measurements of γ from B± → D0K± techniques).

6.9.2 γ = 60◦ and δd = 60◦

Since the value of δd is not constrained by any existing data, it is interesting to explore the
achievable precision on γ in the case of a larger δd. As will be discussed in Section 7.1, sizeable
non-factorizable effects could exist which lead to such a scenario.

The contour plots after one year of data taking are shown in Figure 7, with the final γ likelihood
in the bottom right hand corner. The eight ambiguous solutions are still grouped in two bunches
of four, but the individual solutions within each foursome are now close to being statistically
distinguishable. The contour plots after five years of data taking are shown in Figure 8. The eight
individual solutions are now clearly visible, although their statistical separation is still only around
1σ. Once again, the most useful way in which this measurement would contribute to the global
knowledge of γ is by being combined with measurements which do not suffer from degeneracy
problems.
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6.10 Introducing information from B0
s → D−

s K+

The ambiguous solutions are a problem not only because of their number, but also because of their
degeneracy. One way to break this degeneracy is to introduce assumptions about the value of δd.
Anticipating the eventual combined analysis of these channels in Section 7, U-spin symmetry can
be used to related δd to δs

δd = δs, (41)

which will be measured along with γ from B0
s → D−

s K+. The errors on this equality will come from
the statistical error on δs and U-spin breaking effects. The statistical error on γ from B0

s → D−
s K+

is expected to be ∼ 10◦ after one year [CMR07], and if this extraction is unambiguous then δs

will be known with the same precision. This error will be doubled to account for U-spin breaking
effects; this is a conservative assumption, particularly if δs is small. Therefore the precisions with
which δd is known will be taken as

σ1y
δd

= 20◦;

σ5y
δd

= 10◦.

In both cases, the knowledge of δd is implemented as a Gaussian constraint on the contours in
δd - γ space before projecting onto the γ axis.

6.10.1 γ = 60◦ and δd = 10◦

The contour plots after one year of data taking are shown in Figure 9, and the bias in γ is still
present, although the second foursome of ambiguous solutions has been ruled out. After five years,
however, the “correct” value of γ is beginning to be better isolated, as seen in Figure 10. It is now
useful to quote a precision on γ

γ5y =
(

56+22
−41

)◦
,

and the upper limit may usefully contribute to the world average.

6.10.2 γ = 60◦ and δd = 60◦

The contour plots after one year of data taking are shown in Figure 11, and the “correct” solution
for γ is already well separated from the remaining ambiguous solution. The measured value of γ is

γ1y =
(

60+30
−21

)◦
.

The contour plots after five years are shown in Figure 12. All ambiguous solutions have been ruled
out, and the measured value of γ is

γ5y =
(

60+11
−10

)◦
.

6.11 Summary of conventional extraction

The angle γ can be extracted with a precision which depends significantly on the values of the
parameters δd and φd−γ. The value of the mistag can be fitted from the asymmetries independently
of any external information about its value, which eliminates one significant source of systematic
error in the fit. The achievable precision on γ depends on the lifetime distribution of the selected
B0

d mesons, with samples richer in longer lived B0
d particles affording a better sensitivity to γ. The

precision achievable on the value of γ depends significantly on the knowledge of the parameter xd,
which must be established from external sources.

The “conventional” extraction of γ suffers from an eightfold ambiguity on the extracted value of
γ, which also decreases the precision on γ because some of the ambiguous solutions are degenerate.
In the limit of small δd, these degeneracies prevent the “correct” value of γ from being isolated
even after 5 years of data taking, unless information from B0

s → D−
s K+ is introduced to constrain

the value of δd and break the degeneracy. The bigger the strong phases, the easier these degenerate
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Figure 5: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top right),
and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is shown in
the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s) correspond
to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to the central
value(s). This plot is made with input values of γ = 60◦, δd = 10◦, one year of data taking, and a
20% uncertainy on the assumed value of xd = 0.0175. No constraint is applied on δd when calculating
the likelihood. Note that the units of δd on the vertical axis are degrees.
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Figure 6: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top right),
and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is shown in
the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s) correspond
to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to the central
value(s). This plot is made with input values of γ = 60◦, δd = 10◦, five years of data taking, and a
10% uncertainy on the assumed value of xd = 0.0175. No constraint is applied on δd when calculating
the likelihood. Note that the units of δd on the vertical axis are degrees.
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Figure 7: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top right),
and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is shown in
the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s) correspond
to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to the central
value(s). This plot is made with input values of γ = 60◦, δd = 60◦, one year of data taking, and a
20% uncertainy on the assumed value of xd = 0.0175. No constraint is applied on δd when calculating
the likelihood. Note that the units of δd on the vertical axis are degrees.
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Figure 8: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top right),
and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is shown in
the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s) correspond
to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to the central
value(s). This plot is made with input values of γ = 60◦, δd = 60◦, five years of data taking, and a
10% uncertainy on the assumed value of xd = 0.0175. No constraint is applied on δd when calculating
the likelihood. Note that the units of δd on the vertical axis are degrees.
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Figure 9: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top right),
and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is shown in
the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s) correspond
to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to the central
value(s). This plot is made with input values of γ = 60◦, δd = 10◦, one year of data taking, and a 20%
uncertainy on the assumed value of xd = 0.0175. A Gaussian constraint of δd = (10 ± 20)

◦
is applied

on δd when calculating the likelihood. Note that the units of δd on the vertical axis are degrees.
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Figure 10: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top
right), and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is
shown in the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s)
correspond to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to
the central value(s). This plot is made with input values of γ = 60◦, δd = 10◦, five years of data taking,
and a 10% uncertainy on the assumed value of xd = 0.0175. A Gaussian constraint of δd = (10 ± 10)

◦

is applied on δd when calculating the likelihood. Note that the units of δd on the vertical axis are
degrees.
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Figure 11: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top
right), and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is
shown in the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s)
correspond to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to
the central value(s). This plot is made with input values of γ = 60◦, δd = 60◦, one year of data taking,
and a 20% uncertainy on the assumed value of xd = 0.0175. A Gaussian constraint of δd = (60 ± 20)

◦

is applied on δd when calculating the likelihood. Note that the units of δd on the vertical axis are
degrees.
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Figure 12: Contour plots showing the constraints in the δd - γ plane from Sd (top left), Sd (top
right), and the combined constraint from Sd and Sd (bottom left). The likelihood projection in γ is
shown in the bottom right plot. Warmer colours indicate a greater probability density. The blue line(s)
correspond to the central value(s) for γ, while the red area indicates the 1σ interval corresponding to
the central value(s). This plot is made with input values of γ = 60◦, δd = 60◦, five years of data taking,
and a 10% uncertainy on the assumed value of xd = 0.0175. A Gaussian constraint of δd = (60 ± 10)

◦

is applied on δd when calculating the likelihood. Note that the units of δd on the vertical axis are
degrees.
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solutions are to separate, but external input on the value of δd is still required to extract a single
solution for γ.

An alternative method for extracting γ, which resolves the ambiguous solutions as well as
requiring no a priori knowledge of the parameter xd, is now presented.

7 Extraction of the angle γ through the U-spin analysis of

the channels B0
d → D−π+ and B0

s → D−
s K+

The last section showed that the conventional extraction of γ from the channel B0
d → D−π+ suffers

from two weaknesses which complicate the extraction of γ:

1. An eightfold ambiguity on the extracted value of γ;

2. The requirement that xd is well constrained from external sources.

This section will discuss a method of measuring γ by using the U-spin symmetry between the
channels B0

d → D−π+ and B0
s → D−

s K+, proposed in [Fle03], which offers the potential for an
unambiguous extraction of γ and does not require any knowledge of xd. Before discussing the full
combined extraction, however, two ways on reducing the number of ambiguous solutions for γ in
each individual channel are described.

7.1 Reducing the ambiguity through factorization

One technique for eliminating ambiguous solutions is to use factorization arguments. Here they
can be used to fix the sign of cos δq in Equation 39, thus enabling the sign of sin (φq + γ) to be
fixed. Factorizing the four-quark matrix operators Mq, M q in Equation 8 into the product of two
quark currents allows the sign of their ratio to be determined, which in turn allows the sign of δq

and therefore sin (φq + γ) to be determined. The details of the calculation are given in [Fle03],
and the result is (for the modes with L = 0)

δq |fact = 0◦. (42)

Hence the sign of sin (φq + γ) is seen to be positive, reducing the number of ambiguous solutions
by half. It should be noted that the factorization assumption may receive sizable corrections for
B0

q → Dquq decays, where the spectator quark q ends up in the “light” uq meson. Nonetheless, it
is expected that these corrections will not change the sign of cos δq .

7.2 Exploiting A∆Γ

There is another observable yet to be exploited in Equation 3, A∆Γ:

A∆Γ =
2Reξq

1 + |ξq |2
. (43)

Within the asymmetry, A∆Γ is multiplied by the term sinh (∆Γqt/2), where ∆Γq is the width
difference of the Bq mass eigenstate. This width is negligible in the B0

d sector, however, it may
play a substantial role in the Bs sector, where ∆Γq/Γq has been determined at the Tevatron
[ea05a, ea07] as |∆Γq/Γq| ∼ 10%. It is therefore worth briefly reviewing its importance with
respect to the decay B0

s → D−
s K+, with reference to the latest LHCb Monte Carlo studies in this

channel [CMR07].

23



What makes A∆Γ such a useful observable is that it can be extracted from the untagged rate
Γ

(

B0
q (t) → Dquq

)

, i.e. the combined rate for B0
q and B0

q events to decay into the same final state

Γ
(

B0
q → Dquq

)

(t) =
[

Γ
(

B0
q → Dquq

)

+ Γ
(

B0
q → Dquq

)]

× [cosh (∆Γqt/2) − A∆Γ sinh (∆Γqt/2)] e−Γqt. (44)

Here, Γq refers to the average decay width, Γq = (Γq
H + Γq

L) /2. This provides valuable information
on γ through the constraint

[C]2 + [S]2 + [A∆Γ]2 = 1, (45)

The fact that A∆Γ has a qualitatively different dependence on γ than C or S allows this relation
to be used to eliminate certain ambiguities in the extracted value of γ. The inclusion of untagged
events also substantially increases the number of events available to the analysis, since the tagging
power in Bs channels is only expected to be around 8%. It has been shown that including these
untagged events in the study improves the precision with which γ + φs can be measured in the
channel B0

s → D−
s K+ from ∼ 12◦ to ∼ 10◦ in 1 year of LHCb running in a conventional analysis.

In the context of the combined U-spin analysis, using untagged events results in an improved
precision on the parameters Ss, Ss.

7.3 Combined extraction of γ

The combined extraction of γ relies on the U-spin symmetry between the channels Bd → Ddud

and Bs → Dsus, which are obtained by replacing all down quarks in the decay by strange quarks.
From Equation 39 it follows that

[

as cos δs

ad cos δd

]

R = − (−1)
Ls−Ld

[

sin (φd + γ)

sin (φs + γ)

] [ 〈Ss〉+
〈Sd〉+

]

, (46)

and similarly
[

as sin δs

ad sin δd

]

R = − (−1)
Ls−Ld

[

cos (φd + γ)

cos (φs + γ)

] [ 〈Ss〉−
〈Sd〉−

]

, (47)

where

R ≡
(

1 − λ2

λ2

) [

1 + x2
d

1 + x2
s

]

. (48)

Here, λ is the sine of the Cabibbo angle. For the decays considered here, Ls = Ld = 0, and exact
U-spin symmetry implies that

as = ad, δs = δd. (49)

Substituting these into Equations 46 and 47, it is possible to extract γ unambiguously in a number
of ways, depending on what additional assumptions are made. Three scenarios are considered in
turn: a strong U-spin assumption, a phase U-spin assumption, and an amplitude U-spin assump-
tion.

7.3.1 Strong U-spin assumption

In this scenario, it is assumed that δs = δd and as = ad. Equations 46 and 47 are used to constrain
γ, and their theoretical uncertainties are determined by U-spin breaking corrections to

as cos (δs) = ad cos (δd) ,

and
as sin (δs) = ad sin (δd)

respectively.
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7.3.2 Phase U-spin assumption

In this scenario it is assumed that δs = δd, but no assumption is made about the relative values of
as and ad. Equations 46 and 47 imply the following relation

tan φd + γ

tanφs + γ
=

[

tan δd

tan δs

][ 〈Ss〉−
〈Ss〉+

] [ 〈Sd〉+
〈Sd〉−

]

, (50)

which can then be used to extract γ unambiguously from the four CP-observables 〈Ss,d〉+,−. The
theoretical uncertainty in this extraction results from U-spin breaking corrections to δs = δd only.

7.3.3 Amplitude U-spin assumption

In this scenario, it is assumed that as = ad, but no assumption is made about the values of δs or
δd. The exact relation

(

as

ad

)

R = σ

∣

∣

∣

∣

sin (2φd + 2γ)

sin (2φs + 2γ)

∣

∣

∣

∣

√

√

√

√

〈Ss〉2+ cos (φs + γ)
2
+ 〈Ss〉2− sin (φs + γ)

2

〈Sd〉2+ cos (φd + γ)
2
+ 〈Sd〉2− sin (φd + γ)

2 , (51)

which follows from Equation 39 and the definitions of aq and R given before, is used to extract γ.
The parameter σ governs the sign of the right hand side, so that

σ = −sgn
[

〈Ss〉+ 〈Sd〉+ sin (φd + γ) sin (φs + γ)
]

, (52)

if cos δs and cos δd are assumed to have the same sign, while

σ = −sgn
[

〈Ss〉− 〈Sd〉− cos (φd + γ) cos (φs + γ)
]

, (53)

if sin δs and sin δd are assumed to have the same sign.

7.4 Fitting to the CP-observables

In the combined extraction, fitting to the CP-observables is done using the same toy Monte Carlo
as in the previous section. The fitted parameters are Sd, Sd, as defined in Equation 15 and 16,
while the parameters Cd, Cd are fixed to be ±1 in the fit, which is an excellent approximation.
Because Cd is fixed, no knowledge of the parameter xd is required, so that the fitted precisions on
Sd, Sd only depend on the number of events and any systematic effects from the time resolution
and imperfect knowledge of the mistag and background. As before, the mistag rate is left as a free
parameter in the fit, thus eliminating that source of systematic error. For the channel B0

s → D−
s K+

Equation 45 has been used to provide an additional constraint on the parameters Ss, Ss, improving
the precision with which they are extracted. Table 5 shows the precisions on the CP-observables,
mistag, and xs, which do not depend on the values of γ, φd or δd.

The CP-observables S, S are typically of order Sd ∼ O (0.01) and Ss ∼ O (0.1). Sd, Sd have
been measured by B-factories in the B0

d sector, with a current world precision of ±0.04 [ea06d].
This precision will improve by the time LHCb starts taking data, and B-factory data will be
combined with data from LHCb to yield the best possible constraint on γ. At the time of writing,
there has been no observation of CP violation in the decays B0

s → D−
s K+.

7.5 Sensitivity to γ

Since the extraction of γ can proceed in any one of the three ways reviewed in Section 7.3, it will
be necessary to perform a case study for each of these extraction scenarios. In particular, it is
useful to concentrate on the sensitivity of these extraction scenarios to U-spin breaking effects, as
well as their sensitivity to the input values of the parameters γ and δs,d.

The inputs to the combined analysis are given in Table 6. Although the CP-observables will
have associated systematic errors, the dominant systematic errors within the combined analysis
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Table 5: A summary of the statistical precisions on the CP-
observables Sq, Sq , the mistag rate ωq, and xs in the channels
B0

d → D−π+ and B0
s → D−

s K+ for one and five years of running,
corresponding to 2 fb−1 and 10 fb−1 of data respectively.

ωd Sd Sd ωs Ss Ss xs

σ1y 0.1% 0.0105 0.0105 0.3% 0.11 0.10 0.066
σ5y 0.05% 0.0046 0.0046 0.13% 0.049 0.045 0.029

Table 6: Input parameter values to the combined anal-
ysis toy Monte Carlo.

Parameter xs xd λ φd φs Rb

Value 0.37 0.0175 0.22 47◦ 0◦ 17.2

are expected to come from U-spin breaking effects. Therefore, only the statistical errors on the
CP-observables will be considered in this study. Also, it is assumed that φs, φd, and Rb are known
exactly. In the case of Rb, this assumption is justified because the precisions on xs from the
channel B0

s → D−
s K+ imply a relative error of ∼ 4% on Rb after one year of data taking. This

error is both negligible compared to the errors on the CP-observables, especially in the Bs sector,
and it is also likely to be negligible compared to U-spin breaking effects. Effects such as time
resolution, mistag, background, and the lifetime acceptance have been taken into account when
determining the statistical errors on Sq , Sq . Finally, since the channels in question are expected to
be insensitive to new physics, the usual assumption that γ lies between 0◦ and 180◦ degrees will
be used throughout.

In principle, it is possible to use all four Equations 46, 47, 50, and 51 in order to extract γ
unambiguously. These four extractions are complementary, not only because they allow for the
extraction of γ under different assumptions, but also because they afford varying precisions and
discrimination between ambiguities depending on the values of γ and δs,d. The contour plots shown
in this section are to be read as follows

• The vertical axis describes the level of U-spin breaking, with 1 (thick horizontal line) corre-
sponding to perfect U-spin symmetry for the quantities shown.

• The dashed straight lines enclose the region of ±30% U-spin breaking. Although there is
no precise estimate of the likely level of U-spin breaking, 30% is a conservative assumption,
since U-spin is expected to be a better symmetry than SU(3) in these decays. The expected
level of SU(3) breaking was discussed in Section 3, and given as 10%.

• The thick curved line is the value of γ which would be measured given the appropriate level of
U-spin symmetry breaking, assuming that the CP-observables Sq , Sq were perfectly known.
It crosses the perfect U-spin symmetry line at the input value of γ, in this case 60◦.

• The dashed curved lines are the 1σ contours, representing the uncertainty on the CP-
observables Sq, Sq.

• The triangle marks the location of the input value of γ.

• The upside down triangles mark the ambiguous solutions coming from the conventional B0
d →

D+π− analysis.

Two particular scenarios, corresponding to large and small strong phase differences, will be con-
sidered in detail, followed by a more general overview of the performance.
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Figure 13: Contours in γ – U-spin breaking space for one year of data taking, with γ = 60◦ and
δs,d = 60◦. The four scenarios shown correspond, clockwise from top left, to Equations 46 (strong
U-spin), 47 (strong U-spin), 51 (amplitude U-spin), and 50 (phase U-spin).

7.5.1 Error estimation

In the examples given, the errors are estimated from the intersection of the 1σ contours with
horizontal lines indicating a ±30% level of U-spin symmetry breaking. In particular, consider
Figure 14, and the contours for Equation 47. The 1σ contours and ±30% U-spin breaking lines
define a region, whose upper right corner corresponds to the maximum positive error (system-
atic+statistical), while its lower left corner corresponds to the maximum negative error for the 1σ
contours, assuming that U-spin breaking is limited to ±30%. The negative error is taken from
that contour for which the negative error is smallest (in this case Equation 47), while the positive
error is independently taken from that contour for which the positive error is smallest. In this case
the positive error is also smallest for Equation 47, but in principle the positive and negative errors
could be obtained from different contours.

Such an error estimation procedure is not optimal, because it does not use all the available
information. For one thing, the U-spin breaking is assumed to contribute a flat error, when in
reality it should be estimated by a Gaussian of appropriate width. In addition, each of the four sets
of contours is considered independently, when in reality they should be considered together. Instead
of drawing 1σ bands for each U-spin assumption, the correct procedure would be to calculate the
PDF in γ–(U-spin breaking) space using all four assumptions and accounting for the correlations
between them. Take as an example the contours associated with Equations 46 and 47: these are
produced from orthogonal combinations of independent (ignoring correlations) variables, and are
themselves independent. Therefore they could be multiplied together to produce a joint PDF in
γ–(U-spin breaking) space. The 1σ contours in γ would then be calculated by projecting the
resulting PDF onto the γ axis. The current procedure is akin to projecting the PDF associated
with each assumption before combining them.

7.5.2 γ = 60◦ and δs,d = 60◦

The contour plots for this scenario are shown in Figure 13 for one year of data taking, and in Figure
14 for five years of data taking. After one year of data taking, the strong U-spin assumption of
Equation 47 already disfavours all ambiguous solutions, even allowing for a 30% U-spin breaking
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Figure 14: Contours in γ – U-spin breaking space for five years of data taking, with γ = 60◦ and
δs,d = 60◦. The four scenarios shown correspond, clockwise from top left, to Equations 46 (strong
U-spin), 47 (strong U-spin), 51 (amplitude U-spin), and 50 (phase U-spin).

correction. The statistical precision is −21◦,+9◦, while a 30% U-spin breaking correction introduces
an additional ±3◦ systematic error. The phase U-spin assumption provides an upper statistical
error on γ of 10◦. Although the ambiguous solution at ∼ 160◦ is not disfavoured by this assumption,
it is disfavoured for most scenarios by the other three relations. The amplitude U-spin assumption
provides a statistical precision of −8◦,+14◦, and a 30% U-spin breaking correction introduces an
additional ±4◦ systematic error. Once again, ambiguous solutions are disfavoured when all four
relations are considered together.

After five years, the strong U-spin assumption of Equation 47 gives a statistical precision of
−8◦,+5◦, while a 30% U-spin breaking correction introduces an additional ±2◦ systematic error.
All ambiguous solutions are now heavily disfavoured for any U-spin breaking correction for which
as sin (δs) has the same sign as ad sin (δd). The phase U-spin assumption now also gives a statistical
precision of −7◦, +5◦, while a 30% U-spin breaking correction introduces an additional −2◦,+3◦

systematic error. The amplitude U-spin assumption affords a statistical precision of −5◦, +7◦,
while a 30% U-spin breaking correction introduces a systematic of ±3◦. When all four relations
are considered together, it is clear that all ambiguous solutions are excluded after five years of data
taking.

7.5.3 γ = 60◦ and δs,d = 10◦

Now consider the same value of γ, but much smaller strong phases. The contour plots are shown in
Figure 15 for one year of data taking, and in Figure 16 for five years of data taking. After one year,
none of the four relations provide effective discrimination against ambiguities. The best resolution
comes from using the strong U-spin assumption of Equation 46, which reduces the ambiguity on
γ to a twofold one, and gives a statistical precision of −20◦,+30◦. After five years, the strong
U-spin assumption of Equation 46 gives a statistical precision of −8◦,+10◦, while the phase U-spin
assumption gives an upper statistical precision of +12◦, however it is much less sensitive to U-spin
breaking effects, with an upper systematic error of +4◦ associated with a 30% level of U-spin
breaking. Equation 46 is now beginning to disfavour the solution at ∼ 53◦ under exact U-spin
symmetry. In general, Equation 46 is the only relation which provides any discrimination when
the strong phases are small, and this area of parameter space is where the combined extraction
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Figure 15: Contours in γ – U-spin breaking space for one year of data taking, with γ = 60◦ and
δs,d = 10◦. The four scenarios shown correspond, clockwise from top left, to Equations 46 (strong
U-spin), 47 (strong U-spin), 51 (amplitude U-spin), and 50 (phase U-spin).
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Figure 16: Contours in γ – U-spin breaking space for five years of data taking, with γ = 60◦ and
δs,d = 10◦. The four scenarios shown correspond, clockwise from top left, to Equations 46 (strong
U-spin), 47 (strong U-spin), 51 (amplitude U-spin), and 50 (phase U-spin).
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performs least well.

7.6 Performance summary

The specific values of γ and the strong phases affect the combined extraction in two important
ways. Firstly, certain combinations of γ, δs, δd can lead to ambiguous γ solutions separated by only
a few degrees, which will be impossible to distinguish even after many years of running. Secondly,
the width of the error contours in U-spin/γ space varies with the values of γ, δs, δd. Consider
Equation 47, modified to take into account the errors on 〈Ss,d〉−:

[

as sin δs

ad sin δd

]

R = − (−1)
Ls−Ld

[

cos (φd + γ)

cos (φs + γ)

]

[

〈Ss〉− ± σ〈Ss〉−

〈Sd〉− ± σ〈Sd〉−

]

. (54)

If the error on 〈Ss,d〉−, σ〈Ss,d〉−
, is greater than the value of 〈Ss,d〉− itself, the sign of this observable

will be badly defined, and the corresponding error contour will not provide a useful constraint on
γ. An example of this effect was seen in the scenario with small strong phases above, where it is
precisely this effect that prevents Equation 47 from usefully constraining γ, even after five years
of running.

This uncertainty on the sign of 〈Ss,d〉± also causes the achievable precision on γ to be limited
by the errors on 〈Sd〉±, not 〈Ss〉±. Although the errors on 〈Sd〉± are much smaller than those

on 〈Ss〉±, the fact that xs � xd means that
∣

∣〈Ss〉±
∣

∣ �
∣

∣〈Sd〉±
∣

∣, and the parameters 〈Sd〉± are
therefore more susceptible to being measured with an incorrect sign. For example, when γ = 60◦

and δs,d = 60◦, the CP-observables are

〈Sd〉− = −0.012,

〈Sd〉+ = 0.023,

〈Ss〉− = 0.28,

〈Ss〉+ = −0.28,

while the errors are given by

σ〈Sd〉±
= 0.0105,

σ〈Ss〉±
= 0.011.

Notice the doubling of the error on 〈Ss〉± will not change the sign of 〈Ss〉±, but doubling the error
on σ〈Sd〉±

will change the sign of 〈Sd〉−, rendering Equation 47 of limited use in constraining γ. It

is important not to allow the small errors on 〈Sd〉± to obscure the fact that it is these parameters
that need to be known most precisely for the combined analysis to fulfil its potential.

Table 7 presents the errors for the two scenarios shown above. The upper error quoted in any
one γ, δ scenario is the smallest upper error in any one of the four U-spin assumptions, and similarly
for the lower error. For example, it is possible for the quoted upper error in a scenario to come
from the strong U-spin assumption, while the lower error comes from the phase U-spin assumption.
The statistical and systematic error are always quoted from the same U-spin assumption.

It turns out that γ = 60◦ is particularly favourable for this extraction, because none of
the four CP-observables 〈Ss,d〉± is then particularly small. Looking back at Equation 39, the
sin (φq + γ) , cos (φq + γ) terms control the size of 〈Ss,d〉±. For γ = 60◦, φd + γ = 107◦ and
φs +γ = 60◦, so that all four sine and cosine terms are substantial, but for values of γ significantly
higher or lower than 60◦ these terms may approach 0, limiting precision regardless of the values of
the strong phases. Finally, the performance for negative strong phases will be exactly the same as
for positive strong phases of the same magnitude, as long as δs and δd have the same sign.

7.7 Summary of combined extraction

The combined U-spin analysis of the channels B0
d → D−π+ and B0

s → D−
s K+ allows for an unam-

biguous extraction of γ under a variety of theoretical assumptions. It also has a great advantage
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Table 7: One and five year precisions on γ for the scenarios considered in
this note, giving the statistical error and the systematic error associated
with a 30% U-spin breaking.

σstat
1y σsyst

1y σstat
5y σsyst

5y

γ = 60◦,δs,d = 60◦ −9◦, +9◦ −4◦, +3◦ −5◦, +5◦ ±3◦

γ = 60◦,δs,d = 10◦ −20◦, +30◦ −10◦, +22◦ −8◦, +12◦ −15◦, +4◦

over the “conventional” extraction of not requiring 〈xd〉 to be resolved, since 〈xd〉 only enters the

expressions for γ as a second order correction through the term 1 + 〈xq〉2, which is negligible.
Even if this combined analysis is outperformed by other analyses at measuring γ, it can instead

be used to learn about the scale of U-spin symmetry breaking. For example, under perfect U-spin
symmetry, the untagged rate analysis and the U-spin analysis can be expected to return the same
value of γ, since the experimental systematics will be broadly similar in the Bs and Bd systems4).
Any observable difference between the fitted values of γ can therefore be used to constrain the
U-spin breaking parameters. Finally, the U-spin analysis may allow a limit to be set on as/ad in
conjunction with other tree level measurements of γ. It may then be possible to use the expression

as

ad
=

(

λ2

1 − λ2

)
∣

∣

∣

∣

xs

xd

∣

∣

∣

∣

, (55)

to make an indirect measurement of xd, since xs will be large enough to measure from the asym-
metries in B0

s → D−
s K+ alone.

8 Conclusion

The CKM angle γ can be extracted from the decay mode B0
d → D−π+ with a precision which

depends significantly on the values of the parameters δd and φd − γ, as well as the assumed error
on the knowledge of xd. The value of the mistag in this channel can be fitted from the asymmetries
independently of any external information about its value, which eliminates one significant source
of systematic error in the fit. The achievable precision on γ depends on the lifetime distribution
of the selected B0

d mesons, with samples richer in longer lived B0
d particles affording a better

sensitivity to γ. The precision achievable on the value of γ depends significantly on the knowledge
of the parameter xd, which must be established from external sources.

Because of these difficulties, a combined analysis of the channels B0
d → D−π+ and B0

s → D−
s K+

has been pursued. The method’s viability has been demonstrated through a toy Monte Carlo
incorporating significant amounts of realism, including background, mistag, proper time resolution,
and the proper time acceptance. The precision on γ, and the viability of excluding ambiguous
solutions, is found to have a significant dependence on the precise input values of γ and the strong
phases δd,s. With the preferred Standard Model value γ = 60◦ and large strong phases, it is
possible to achieve a statistical precision of <5◦ after five years of data taking, while excluding
all ambiguous solutions. Other scenarios, such as small strong phases, or low values of γ, make
an unambiguous extraction more difficult, and reduce the statistical precision achievable after five
years of data taking to ∼ 10◦, with a systematic error of ∼ 15◦.

Finally, these methods can be applied directly to the decay modes B0
s → D−

s K∗+, B0
d → D−ρ+,

B0
s → D∗−

s K+, B0
d → D∗−π+, and work is ongoing on a combined extraction of γ from all of these

modes. A brief discussion of the possible improvement achievable by including the decay mode
B0

d → D∗−π+ is included in Appendix A.

4)In particular, the mistag rate can be fitted from the asymmetries in both B0
d
→ D−π+ and B0

s → D−
s K+, the

proper time resolutions are expected to be similar, as are the lifetime acceptance functions.
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A Including information from B0
d → D∗±π∓

The decay mode B0
d → D∗±

(

D0π±
)

π∓ depends on γ in an analogous way to B0
d → D±π∓, and

therefore naturally complements the study presented in this note. Indeed the extraction of γ from
this mode has already been studied at LHCb [Rad01]. The most recent selection study [AE03] found
LHCb could expect to reconstruct 206,000 B0

d → D∗±
(

D0π±
)

π∓ fully triggered decays in 2 fb−1

of data taking with an exclusive reconstruction technique. Additionally, an inclusive reconstruction
technique, where the D0 is assumed to decay into two charged particles plus anything else, and
the momenta of the two pions are used to reconstruct the B momentum, has been shown [Rad01]
to yield 867,000 fully triggered signal events in 2 fb−1 of data taking. It is interesting to explore
the contribution this decay mode can make to the extraction of γ from B0

d → D±π∓.
From an experimental point of view, the inclusive reconstruction of B0

d → D∗±
(

D0π±
)

π∓ leads
to a proper time resolution of 170 fs, approximately four times worse than in B0

d → D±π∓. In
addition, the mass resolution is considerably worse. On the other hand, the mass difference between
the D∗± and D0 remains a powerful background discriminant even in the inclusive reconstruction,
while the D∗± decay mode may benefit from a higher interference [ea08] between its tree level
diagrams, and hence a higher intrinsic sensitivity to γ. The D∗± and D± modes can be expected
to have the same flavour tagging performance. For the purposes of this appendix, the precisions on
the CP-observables in B0

d → D∗±
(

D0π±
)

π∓ are assumed equal to the precisions in B0
d → D±π∓,

for an equal number of events. Assuming the inclusive reconstruction technique is used, and
scaling the precisions in Table 5 for the smaller annual yield of the D∗±, the precision on the CP
observables after 2 fb−1 of data taking is found to be σSd∗ = 0.0134.

From a theoretical point of view, the mode B0
d → D∗±

(

D0π±
)

π∓ has the additional interest
that its strong phase is expected [Fle03] to be 180◦ away from the strong phase of B0

d → D±π∓:
δd∗ = δd−180◦. This allows the combined γ precision from B0

d → D∗±
(

D0π±
)

π∓ and B0
d → D±π∓

to be better than a naive addition in quadrature, because the discrimination between ambiguous
solutions is improved as well as the statistical precision on each solution. For a clear example of
this, consider the precision achievable after 10 fb−1 of data taking in the case where γ = 60◦ and
δd = 60◦. Figure 8 shows the precision from B0

d → D±π∓ alone, where the ambiguous solutions
are not resolved at the 1 σ level. The result of including the B0

d → D∗±
(

D0π±
)

π∓ data, and
assuming that δd∗ = δd − 180◦ is shown in Figure 17. All ambiguous solutions are now more than
1 σ away from each other, and the measured value of γ at the “correct” solution is

γ5y =
(

61−8
+10

)◦
.

Note that this has been achieved without any U-spin assumptions about the size of the strong
phases, and making such assumptions will further improve the achievable precision, as well as
excluding ambiguous solutions. Studying the strong phases in the U-spin related decay channels
B0

s → D±
s K∓ and B0

s → D∗±
s K∓ will also provide an interesting cross check of the assumption

that δd∗ = δd − 180◦.
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Figure 17: Contour plots showing the constraints in the δd,d∗ - γ plane. Top row: from Sd (top left), Sd

(top middle), and the combined constraint from Sd and Sd (top right). Middle row: from Sd∗ (middle
left), Sd∗ (middle middle), and the combined constraint from Sd∗ and Sd∗ (middle right). Bottom
row: projected combined constraint from Sd and Sd (bottom left), projected combined constraint from
Sd∗ and Sd∗ (bottom middle), projected total constraint from all four observables (bottom right).
The likelihood projection in γ is shown in the bottom three plots. Warmer colours indicate a greater
probability density. The blue line(s) correspond to the central value(s) for γ, while the red area indicates
the 1σ interval corresponding to the central value(s). This plot is made with input values of γ = 60◦,
δd = 60◦, δd∗ = −120◦, five years of data taking, and a 10% uncertainy on the assumed values of
xd, xd∗ . A constraint of δd∗ = δd −180◦ is applied when calculating the likelihood. Note that the units
of δd on the vertical axes are degrees.
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