
GLAS-PPE/2009-11
28th October 2009

Department of Physics and Astronomy
Experimental Particle Physics Group

Kelvin Building, University of Glasgow,
Glasgow, G12 8QQ, Scotland

Telephone: +44 (0)141 330 2000 Fax: +44 (0)141 330 5881

VETRA - offline analysis and monitoring software platform for the LHCb Vertex
Locator

Tomasz Szumlak1

1 University of Glasgow, Glasgow, G12 8QQ, Scotland

Abstract

The LHCb experiment is dedicated to studying CP violation and rare decay phenomena. In order to
achieve these physics goals precise tracking and vertexing around the interaction point is crucial. This
is provided by the VELO (VErtex LOcator) silicon detector. After digitization, FPGAs are employed to
run several algorithms to suppress noise and reconstruct clusters. This is performed by an FPGA based
processing board. An off-line software project, VETRA, has been developed which performs a bit perfect
emulation of this complex processing in the FPGAs. This is a novel development as this hardware emulation
is not standalone but rather is fully integrated into the LHCb software to allow the reconstruction of full data
from the detector. This software platform facilitates the development and understanding of the behaviour of
the processing algorithms, the optimization of the parameters of the algorithms that will be loaded into the
FPGA and monitoring of the detector performance. This framework has also been adopted by the Silicon
Tracker detector of LHCb. This processing framework was successfully used with the first 1500 tracks of
data in the VELO obtained from the first LHC beam in September 2008. The software architecture and
utilisation of the VETRA project will be discussed in detail.

17th International Conference on Computing in High Energy and Nuclear Physics

21 - 27 March 2009 Prague, Czech Republic

1 Introduction

The VETRA project was created to facilitate the development and commissioning of the TELL1 [1] board
processing algorithms. The TELL1 board performs the off detector read-out and data processing (zero sup-
pression) of the LHCb VELO, the silicon strip vertex detector, using programmable FPGA processors. In time
VETRA became a much more versatile tool and an essential part of the VELO [2] software; it has been used
for laboratory testing during construction, test-beam operation and detector commissioning. It can emulate the
functionality of the TELL1 board (with respect to the data processing) and produce the output that is of the
same format as the one produced by the TELL1.

The VETRA project will be used in the experiment during data taking as a monitoring tool and for parameter
tuning. It will be used to calculate the values of parameters of the TELL1 processing algorithms such as cross
talk coefficients or clusterization ‘seeding’ and ‘inclusion’ thresholds [3].

The details of the processing algorithms and analysis are not described here, this paper focuses on the
structure and capabilities of the VETRA software project.

A general description of VETRA is provided in section 2. This is followed by two chapters describing the
most important components of VETRA - Non-Zero Suppressed (NZS) data handling (reading and decoding are
presented in section 3) and the TELL1 software emulator (section 4). In section 5 some of the C++ implemen-
tation details are given and the base-line emulation described. A summary and conclusions are presented in
6.

The functionality of VETRA is complimentary to that of the existing LHCb projects [4], its purposes are:

• Decoding of the Non-Zero Suppressed banks 1) (including pedestal bank and error bank)

• TELL1 electronic board processing (zero suppression) emulation

• High level detector monitoring requiring Non-Zero Suppressed data (used in test beams, commissioning
and standard running of the experiment)

• Processing parameter determination (used in commissioning and standard running of the experiment)

The NZS data stream sent out by each VELO sensor consists of 2048 numbers that represent digitized raw
signals (this corresponds to the 2048 physical channels on each sensor). For the whole VELO detector this sums
up to approximately 180000 numbers in the NZS data stream for every event (i.e. each time the detector is
read-out).

The distinct difference between VETRA and the other presently available projects is that VETRA makes
use of NZS data streams, that is the full unprocessed data from the detector. The final output of VETRA - the
emulated Zero Suppressed cluster bank - is identical to the bank that is produced by the data acquisition board
during normal physics running. This is arguably the most important feature of this application since it allows
the direct comparison of the emulated and real data banks produced by the TELL1 boards. The emulated ZS
bank can subsequently be used in just the same way as the TELL1 ZS bank to reconstruct tracks and vertices.

Using the structure of the LHCb software it is also possible to perform functions that would normally be
performed in other projects, such as the VELO tracking. This functionality proved to be very useful during the
VELO test beam when the alignment procedure, VELO tracking, and reconstruction software were all tested
for the first time using the real data.

2 Description of VETRA project

VETRA provides a mechanism to emulate each of the algorithms that would normally be executed in the TELL1
data processor board to perform the zero suppression of the raw (NZS) data. A bit perfect emulation of the
algorithms is provided and the output of the chain is the zero suppressed raw bank, that would normally have
been produced by the TELL1 board. Additional computing resources are available within the FPGA processors
to allow alternative algorithms to be developed and their performance compared with the base-line TELL1
algorithms.

For the VELO, the data is prepared by taking the VeloFull bank produced by the TELL1 and decoding
this into VeloTELL1Data [5] objects. Each VeloTELL1Data object contains the digitized signals from all 2048
strips from one VELO silicon sensor (see section 3 for more details).

1)Each software structure that contains encoded data that come from the VELO detector is called the data bank. Each type of

the data bank can be broken into two parts - the bank header and the bank body. The header is used when the event building is

performed, the bank body contains the actual data.

1

The emulation is broken up into a number of distinct phases that directly correspond to the real processing
performed by FPGA (Field Programmable Gate Array) chips on the TELL1 boards. More information on
this can be found in section 4. The output of each stage, up till the final clustering, is again stored in the
VeloTELL1Data objects.

At each stage of the emulation process detailed monitoring of the output data can be performed. It is
also possible to make a direct comparison of the output of the whole chain with the zero-suppressed data bank
produced by the TELL1 for verification of the TELL1 processing, and to indicate problems with data processing
on the TELL1 boards. This capability is also available in the emulation - no inter-stage monitoring is available
on the TELL1 boards.

The remaining parts of this section provides a short description of the structure and functionality of the
VETRA component packages.

The VETRA project is a relatively large one (it contains around 100 k lines of code). This forces the creation
of a logical structure that aids maintainability and makes the project more transparent for the end-user. All
the components can be divided (according to their functionality) into the following categories:

• Core packages

• Utility packages

• Monitoring packages

• External packages

The core packages contain the executable code and option files needed for the correct configuration of a
job. Also, all the base classes, standard algorithms (inherited from the GAUDI [6] framework components) and
plain classes (e.g. emulation engine code) used by other packages and tool interfaces are implemented within
the core packages. The emulation engine code is a high level language (C) model of the VHDL firmware that is
run within FPGA processors.

The utility packages contain the implementation of the TELL1 board emulator algorithms. These algorithms
provide the interfaces to the engine classes. One of these interfaces or ‘wrappers’ is provided for each of the
engine classes. They handle the preparation of the input data for the engines, run the processing, and store the
output data. The data for each processing stage is retrieved and stored in specially formatted memory that is
accessible from within every processing algorithm. Each wrapper class uses its engine counterpart as a plug-in.
Using this wrapper-plugin approach the GAUDI environment is directly bound with the software library that
was developed by the TELL1 programmers. This feature makes the emulation follow as closely as possible the
hardware and firmware structure.

The utility packages also contain software that is used to calculate and optimise the parameters of the
TELL1 board processing algorithms. All algorithms related with NZS data analysis, other than monitoring, are
located in this package.

The monitoring packages contain both low and high level monitoring algorithms. The low level ones provide
monitoring of the NZS data, pedestal bank and noise. There also exist a set of monitoring algorithms designed
especially for the VELO commissioning making use of the full data in order to perform tests of the detector
cabling, verifying the mapping between the TELL1 boards and the silicon sensors and determine the time
alignment of the VELO detector. The high level monitoring algorithms make use of information accessible
via both VELO cluster’s and track’s interfaces. It is possible to produce both a collection of histograms and
NTuples for further more specific analysis if necessary.

The external packages (related to the VETRA project but released as a part of the LHCb software core
framework) are related mainly with the VELO raw banks decoding. The ZS bank (the output of the process-
ing board) is decoded to the VELO clusters that are subsequently used in the pattern recognition and track
reconstruction. The ZS data decoding sequence is common for the whole LHCb detector and is executed at the
beginning of the track reconstruction phase in order to translate packed banks into detector specific software
objects used in this phase. The decoding of the NZS data from the full banks is discussed in more details in
section 3 of this paper.

3 The VELO Non-Zero Data Stream Handling

The primary input for VETRA is the decoded NZS data, for the VELO this comes from decoding the VeloFull
raw data bank. In addition data from the VeloPedestal and VeloError banks [7] can be used. The
VeloPedestal bank contains the pedestals currently used in the TELL1 board (the TELL1 board may have
determined these in a processing algorithm or uploaded them from the Experiment Control System). The

2

VeloError bank contains information on synchronization errors that have occurred during data processing.
The decoding of these three VELO banks is discussed in this section.

Before the decoding procedure can be performed the binary data stream created by the Event Builder needs
to be transformed into a RawEvent object and stored in a specially formated memory (the so called Transient
Event Store) (see Fig. 1). This transformation is done automatically by the framework conversion services at
the start of the VETRA job.

The RawEvent may be regarded as a collection of raw banks containing data from all the LHCb sub-detectors
that can be accessed from within a GaudiAlgorithm using its standard interface. The VeloError bank is decoded
into a dedicated VeloErrorBank class that provides a simple interface that can be used for monitoring the TELL1
behaviour. The VeloFull and VeloPedestal banks are both decoded into the VeloTELL1Data object class (see
Fig. 2). The pedestal data is not subjected to any further processing and is used for monitoring purposes only.

The VeloFull bank contains the raw ADC data, i.e. the digitized charge signals collected from the strips
of the VELO silicon sensors.

��������	�
�
�	���

��� ��� � �����	�
� � �

�	�

�	�����

� 	��	�	
��

�
�	�����

��� ��	��

Figure 1: A binary file created by the Event Builder is transformed into the RawEvent structure using the
converter service (called MDF converter).

����

��������

��������	
��

������

��� ����

������
����	
�	

���� ���������	
�	�

�������	
�	

���� ��������
����	
�	�

����� ����� �
��

���� ������� ������� � ��

����� ����� �
��

���� ���������
��� �����

	
����
 �!��

���� ������� ������� � ��

	
����� ����� �
��

���� ������� ����������

���������"����� ������

���������"�

Figure 2: Decoding of the VELO raw banks. The final VELO data objects for each bank are shown with the
TES location at which they are stored.

4 The VELO Acquisition Board Emulation

This section provides a general description of the TELL1 emulation as implemented in VETRA.

3

4.1 The Emulator

After a positive trigger decision is obtained the data from the VELO detector is read out for pre-processing by
the TELL1 acquisition electronic boards. The pre-processing sequence is performed by programmable FPGA
processors and its purpose is to produce the ZS raw bank (VELO clusters).

Each pre-processing step is implemented as a separate algorithm. The suite of algorithms are executed by
the processing units of the TELL1 and are implemented in the low level VHDL language as a part of the TELL1
firmware. The VHDL code is not easily human readable and hence is cumbersome to maintain, update and
debug. Hence a high-level language model of the VHDL firmware has been created as a set of C-modules each
of which represents one step of the pre-processing. The C-modules are a part of the tell1Lib software library
and are meant to provide bit perfect results identical to those produced by the TELL1 boards.

The C-modules are written in plain C, this makes it possible to run the code on the credit card PC module
that is a part of the TELL1 board. In order to create a reliable emulation executed within the standard LHCb
software environment and keep the C-modules unchanged it was decided to adopt a wrapper-plugin approach,
which is described in more detail in section 5.

Emulator

VeloTELL1FIRFilter

VeloTELL1PedestalSubtractor

VeloTELL1LCMS

VeloTELL1Reordering

VeloTELL1MCMS

TES

LHCb::VeloTELL1Data
(Raw/Velo/DecodedADC)

LHCb::VeloTELL1Data
(Raw/Velo/FIRCorrected)

LHCb::VeloTELL1Data
(Raw/Velo/ADCMCMSCorrected)

LHCb::VeloTELL1Data
(Raw/Velo/ADCCMSuppressed)

LHCb::VeloTELL1Data
(Raw/Velo/ADCReordered)

LHCb::VeloTELL1Data
(Raw/Velo/SubtractedPedADCs)

VeloTELL1ClustrerMaker

LHCb::RawBank::Velo
(Emu/RawEvent)

Figure 3: The algorithm sequence of the base-line TELL1 emulation for the VELO, shown together with the
memory locations of the stored data in the Transient Event Store (TES) .

The emulation sequence presently implemented in VETRA for the VELO is shown in Fig. 3. The list of
algorithms constituting this base-line emulation is as follows:

• Pedestal Subtractor - subtract pedestal offset values for each channel.

• Pedestal Updater 2) - refreshes the value of the pedestal estimate for each channel, this value is then used
in the Pedestal Subtractor for the next event.

• Digital FIR filter - responsible for removing the cross talk from the cable or other sources.

• Mean Common Mode Suppression is an algorithm that has been introduced to counteract saturation
effects in the front end read-out chip’s channels caused by deposition of large charges in those channels.

• Reordering - procedure used to reorder the channels. The channels are reordered from the electronic
channel order to the strip numbering order that follow the geometry of the R/φ VELO sensors. This
sensor geometry order of the strips is required for the clusterization algorithm.

2)The combined operation of Pedestal Subtraction and Pedestal Update is known as Pedestal Following.

4

• Linear Common Mode Subtractor - removes common mode noise

• Zero Suppression (clusterization) - at this step clusters are formed from the channels. Predefined cluster
thresholds are used in the cluster finding algorithm, known as the ‘high’ or ‘seeding’ threshold and the
‘low’ or ‘inclusion’ threshold.

4.2 NZS Data Preparation and Processing

The content of the NZS raw bank for one silicon sensor is presented schematically in Fig. 4. The same structure
is produced for each VELO sensor and contains data from the 2048 strips on the sensor and 256 headers of the
Beetle front-end chip. The Beetle headers samples are used for diagnosing the front-end chip state and time
alignment of the detector).

���������������	
����	

���������������	
����	

�������� �������	
����	

����������������	
����	

�������� �
���	�

����	
����	�������

�
�
�

�����	
����	�������

Figure 4: Contents of the VeloFull raw bank as created by the Event Builder. The data sent out by the Beetle
chips over 36 clock cycles consists of the Beetle headers (4 values) and data samples (32 values).

The raw non-zero suppressed data from each sensor to the corresponding TELL1 board is divided logically
into 64 analogue links. Each analogue link consists of 32 read out (electronic) channels. The input data for
each processing unit of the TELL1 board is made of 16 analogue links. The FPGA processors can process
data in a number of parallel threads called processing channels each of which is responsible for the handling of
two analogue links of data (64 samples). In order to conform properly to this hardware data processing model
within the VETRA emulation 64 dummy channels need to be added at the end of the data stream for each
FPGA processor.

The input data with added dummy channels is then formatted to interface to the C-modules as a 3-
dimensional array of size [4][9][64], where the first index corresponds to the number of processing units, the
second to the number of processing channels (threads) and the last one represents the 64 data samples to be
processed in each FPGA thread. The correct formatting of the input data is critical for the behaviour of the
reordering and clusterization algorithms.

5 Implementation

This section discusses implementation details of the TELL1 emulator for the VELO detector, to assist users in
adding their own algorithms. The term ‘engine’ is used for a class that encapsulates the appropriate C-module
(see section 4). By analogy the term ‘wrapper’ is applied to the algorithm that uses an engine to process the
NZS data. The following sections describe the interaction between the engines and wrappers and the interfaces
to the engine class. An example of how to use the engine class is provided.

5

5.1 Interaction between Engine and Wrapper

TELL1LCMSEngine

Engine class

Engine wrapper

tell1Li
b

c-modules

velo_fir_process

velo_pedestal_updat
e
velo_pedestal_proces
s

velo_reorder_convert

velo_reorder_channel

velo_lcms_process

velo_mcms_process

Vetra

VeloTELL1Algorithms

VeloTELL1FIR

VeloTELL1PedestalSubtacto
r

VeloTELL1LCMS

VeloTELL1Reordering

VeloTELL1ClusterMaker

VeloTELL1MCMS

velo_zs_process

Figure 5: Dependency between the engine classes and the wrappers. Each engine class encapsulates the appro-
priate module from the tell1Lib and is used as plug-in by the corresponding wrapper algorithm.

The relationship between an engine class and a wrapper is depicted schematically in Fig. 5. Each such
class (derived from a TELL1Engine base class) has its counterpart algorithm that can be executed within
the GAUDI framework. These classes perform the actual processing of the NZS data. The main tasks of the
wrappers are to instantiate and configure the appropriate engines, format and feed the input data to them, run
the processing and finally to retrieve and store the output data.

Each processing algorithm needs to be provided with a number of parameters to operate (engine configu-
ration). For instance the C-module responsible for pedestal subtraction - velo pedestal process - needs to be
provided with following set of parameters:

• pedestal algorithm enable flag (a single integer number)

• data scaling mode flag (a single integer number)

• zero suppression enable flag (a single integer number)

• header correction enable flag (a single integer number)

• header correction thresholds (two integer numbers)

• header correction values (two integer numbers per analogue link)

• pedestal masks - to enable or disable pedestal correction for a given channel (2048 integer numbers)

The number of the parameters needed for the full VELO setup for all algorithms is estimated to be of the
order of 106. These parameters can be retrieved in two ways:

• from the option files if the static configuration is chosen

• dynamically from the Condition Data Base

All the data that are used by the emulator’s algorithms are stored inside the TES memory. As the TES
is based on an abstraction of the standard template library (STL), and as it is not possible to use the STL
containers directly in the C language, all the input data must be properly formatted to conform to an engine
interface before it can be passed to the engine for processing. This simply requires a logical rearrangement of
the data from the STL vectors into plain arrays. However, it is important to take care of the proper memory
handling for these insecure table data types. A more detailed description of the engine modules data interface
is given below.

The wrapper-engine pattern that has been used for the TELL1 emulator implementation has been success-
fully demonstrated with the VELO test beam data samples. The software created proved to be fast and stable.

6

The separation of the GAUDI environment technical overhead from the actual code that models the TELL1
processing allows the developers of the tell1Lib software to focus on providing the C code only, without worrying
for instance about problems with data storage technology used in the LHCb software.

5.2 Engine (C-module) Data Interface

The data interface of each C-module corresponds to the hardware implementation of the NZS data manipulation
performed by the FPGA processors. As the data processing is done in parallel by a number of threads it is very
convenient to align the data as a multi dimensional array. The number of all elements in the table is equal to a
sum of the number of electronic channels (2048) of the VELO silicon sensor – each TELL1 board operates on
the data from one VELO sensor – and the number of the dummy channels (256).

The appropriate functionality for the data transformation from a STL container into a plain array has
been implemented inside the base class from which in turn each engine class inherits. The details of the
implementation are discussed below using the pedestal subractor process as an example - the same pattern is
used for all other modules and wrappers.

It was decided to use typedefs rather than explicit array objects to increase the security of the memory
management. Also, all the data manipulation that is done outside the C-modules are performed using the STL
algorithms only to ensure that the data translation will not be corrupted. For instance the type of array used
to pass the input data to the pedestal module has been aliased as:

typedef int Data [PP_FPGA][PROCESSING_CHANNELS][CHANNELS];

The data flow between each engine and wrapper is as follow:
- initialization of the memory buffer that will hold the data to be processed (the buffer is of type Data)

std::memset(**m_cModuleData, 0, sizeof(Data));

- copying of the input data (of type std :: vector〈signed int〉) to the buffer

std::memcpy((**m_cModuleData), &(*inData().begin()), sizeof(Data));

- after the processing the memory buffer contains the output data that needs to be transfered back to the
wrapper

std::memcpy(&(*outData().begin()), (**m_cModuleData), sizeof(Data));

5.3 Implementation Example

In order to explain how a given engine class is employed to perform processing we will continue to use the
pedestal subtraction algorithm as an example. In this case the Tell1PedestalProcessEngine class is used to
remove pedestal offsets from the input data by the VeloTELL1PedestalSubtractor algorithm. One processing
object is created for each TELL1’s data stream. The unique configuration applied for each engine allows
individual parameters to be used, so that the pedestal of each channel is subtracted.

The collection of processing object is defined as one of the wrapper’s data members:

std::map<unsigned int, TELL1PedestalProcessEngine*> m_pedestalEngines;

std::map<unsigned int, TELL1UpdateProcessEngine*> m_updateEngines;

Instantiation and configuration is preformed once per job. All the parameters required by the engine can
be set during that step using its public interface (all the needed parameters are retrieved by the wrapper).
The following example shows how to create a new processing object and set its enable flag parameter (single
number) and strips mask (an array of numbers).

m_pedestalEngines[tell1]=new TELL1PedestalProcessEngine();

m_pedestalEngines[tell1]->setProcessEnable(m_pedestalEnableMap[tell1]);

m_pedestalEngines[tell1]->setLinkMask(m_linkMaskMap[tell1]);

After the configuration each processing object can accept the input data. The main purpose of this prepa-
ration step is to set up all the parameters that are needed for the processing (see 5.1).

m_pedestalEngines[tell1]->setInData(rawADCs);

m_pedestalEngines[tell1]->runSubtraction();

subPedADCs=m_pedestalEngines[tell1]->outData();

where the rawADCs and subPedADCs are containers with the NZS data from one sensor before and after
subtraction respectively.

7

6 Summary and Conclusions

This paper describes the VETRA project which is dedicated to the analysis and monitoring of non-zero sup-
pressed (NZS) data for the LHCb silicon detectors. The project contains NZS data bank decoding and complete
TELL1 electronic board emulation. The processing allows the reproduction of the zero suppressed data bank
that would result from the TELL1 board. This zero suppressed data bank is the standard input data for the
LHCb reconstruction software. The emulator uses part of the tell1Lib library that models the firmware that is
run on the acquisition boards. The software for the modeling of the firmware is provided as a set of C-modules
that correspond to the processing stages performed in the FPGA processors.

The VETRA software has been successfully used to process and analyse data taken during the VELO test
beam, data taken in the laboratory, and initial commissioning data in the experiment.

In the final running of the experiment non-zero suppressed data will be written out at a low rate in addition
to the standard zero-suppressed data. The VETRA software will then be used to determine the parameters
required by the TELL1 processing algorithms and to monitor the performance of these algorithms.

References

References

[1] Haefeli G., Bay A. and Gong A. 2006 Nucl. Inst. and Meth. in Phys. Res. A 569 p 119-122

[2] The LHCb detector at the LHC 2008 JINST 3:S08005

FPGA-based signal processing for the LHCb silicon strip detectors

[3] Haefeli G. 2004 Contribution to the development of the acquisition electronics for the LHCb experiment Thse
EPFL no 3054 (PhD thesis).

[4] Mato P. et al. GAUDI LHCb Data Processing Application Framework LHCb 98-064 COMP

[5] Szumlak T. and Parkes C. VELO Event Model LHCb-2006-054

[6] https://twiki.cern.ch/twiki/bin/view/LHCb/LHCbSoftwareTutorials

[7] Haefeli G. and Gong A. VELO and ST error bank data format EDMS note 694818
Haefeli G. and Gong A. VELO and ST pedestal bank data format EDMS note 695007

8

