   Next: The Diodes Up: Noise theory Previous: Equivalent Noise Generators

## Types of noise sources

There are four noise source classifications in semiconductors: thermal, shot, generation-recombination, and modulation noise. The first three are well understood while the origin of the fourth with regard to semiconductors is less well so.

Thermal noise is a white noise source whose origin is based on fundamental thermodynamic physical laws. For a semiconductor of resistance R the spectral current and voltage noise densities are Shot noise is due to the discreteness of the charge carriers and is related to the statistical nature of their injection into the semiconductor over a Schottky barrier. The origin of the spectral density may be found by considering Carson's Theorem . This states that for a diode with reverse current I which equals e<n>, where n is the spontaneously fluctuating number of electrons that cross the barrier per second, the spectral density is given by It can be seen that the shot noise is linearly dependent on the frequency of the electrons crossing the barrier and quadratically dependent on the charge of the pulse that the electron creates in an external circuit. The spectrum is white because of the very short transit time of the carriers across the barrier, where the barrier includes the space charge region. For the barrier to show full shot noise at all frequencies two conditions must be met. The first is that when charge carriers are injected into the material, space-charge neutrality is re-established in a very short time, given by the material dielectric relaxation time , where is the resistivity of the material. For SIU-GaAs this is of the order of 10-5s. The second is that each current pulse should be able to displace a charge equivalent to that of one electron in the external circuit, that is to say a low trap density is required at the metal-semiconductor interface.

Generation-recombination noise can be understood by considering a semiconductor with a number of traps. The continuous trapping and de-trapping of the charge carriers causes a fluctuation in the number of carriers in the conduction and valence bands. The transitions are described by equation (2) and thus the noise spectral density is Lorentzian in nature, with a corner frequency given by , the lifetime of the electrons in the conduction band. The current noise density was calculated by van Vliet  to be where . It should be noted that in observed spectra the corner frequency of this noise is dispersed, implying a wide distribution of lifetimes. If the current that flows through a device is due to generation then the expression for the noise present will be the generation-recombination one rather than the expression for the shot noise defined in equation (9). However in most Schottky junction devices the applied voltage will increase the injection rate and the noise will show a very close resemblance to shot noise.

At low frequencies an excess noise spectral density with a 1/f amplitude dependence is observed in semiconductors, which is known as modulation noise. As stated earlier the exact cause of this noise is still not understood.   Next: The Diodes Up: Noise theory Previous: Equivalent Noise Generators

Converted to html: Sat Feb 24 20:09:32 GMT 1996