QCD Physics and HERA - Lecture II

James Ferrando - ZEUS Collaboration. 8/2/2005.

- QCD Introduction.
- HERA Accelerator.
- Experiments.
- Deep Inelastic Scattering.
- Proton Structure.
- Photon Structure.
- α_S measurements.
- Beyond the SM.

The HERA Accelerator

- HERA is the only *ep* collider in existence.
- Collides 920 GeV protons and 27.52 GeV protons at the IRs of H1 and ZEUS.
- Offers an order of magnitude more COM energy than previous (fixed target) DIS experiments.
- Allows probing of very high Q^2 and low x regions of DIS.
- Also HERMES A fixed target experiment studying nucleon spin structure.

The HERA Experiments

- ZEUS/H1 started taking data in 1992.
- ZEUS optimised for precision measurements of the hadronic final state.
- H1 optimised for precision measurements of the scattered lepton. (fixed target) DIS experiments.
- HERA experiments have published on a wide variety of topics.
- 2003-2007 is HERA II running with luminosity upgrade + polarised leptons.

HERA Physics

A rich variety of physics topics is available for Study at HERA, Zeus Physics Working Groups:

- High Q^2 :
 - Structure of Proton.
 - Electroweak physics: NC/CC DIS cross section.
 - Rare Standard Model processes.
 - Searches for Physics beyond the standard model.
- Heavy Flavour:
 - Production of Charm, Beauty quarks.
 - Hadronisation of heavy quarks.
 - charm, beauty structure functions.

- **QCD/Hadronic Final State**:
 - Photon structure.
 - Jet production.
 - Particle production.
 - Measurements of $\alpha_{\rm S}$.
- **Diffractive/Low** x:
 - Study of events with a large rapidity gap.
 - Vector Meson production.

Deep Inelastic Scattering

- DIS of leptons on nucleons has been an important tool for understanding nucleon structure and many elements of the SM.
- At HERA DIS processes are studied at $\sqrt{s} \approx 320$ GeV and $Q^2 > M_W, M_Z$.
- Unique tests of the SM and it's extensions are possible in this regime.
- \bullet Neutral and charged current interactions up to $\alpha\alpha_S$:

Neutral Current Deep Inelastic Scattering Event

Calculating The Cross Section For NC DIS I

For the unpolarised cross section, the initial spin states must be averaged over.

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{e^2 e'^2}{q^4} L_e^{\lambda \nu} L_{\lambda \nu}^{\mu}$$

Where: $L_e^{\lambda \nu} = 2(k'^{\lambda} k^{\nu} + k'^{\nu} k^{\lambda} - (k'.k)g^{\lambda \nu})$

Calculating The Cross Section For NC DIS II

Contraction of the leptonic tensors: $L_e^{\lambda\nu} = 2(k'^{\lambda}k^{\nu} + k'^{\nu}k^{\lambda} - (k'.k)g^{\lambda\nu}), L_{\lambda\nu}^{\mu} = 2(p'_{\lambda}p_{\nu} + p'^{\nu}p_{\lambda} - (p'.p)g_{\lambda\nu})$ $L_e.L^{\mu} = 8[(k'.p')(k.p) + (k'.p)(k'.k)]$

Can be rewritten in terms of the Mandelstam variables:

 $s = (k+p)^{2} = (k'+p')^{2}, t = (k-k')^{2} = (p'-p)^{2}, u = (k-p')^{2} = (k'-p)^{2}$ as $L_{e}.L^{\mu} = 2(s^{2}+u^{2}).$ and substitute $y = \frac{(p.q)}{(p.k)} = \frac{u}{s} + 1$ $\frac{1}{4}\sum_{\text{spins}} |\mathcal{M}|^{2} = \frac{e^{2}e'^{2}}{Q^{4}}2s^{2}[1+(1-y)^{2}]$ Finally, putting in phase space and flux factor gives: $\frac{d\sigma}{dy} = \frac{e^{2}e'^{2}}{8\pi Q^{4}}[1+(1-y)^{2}]s$ of course in this case e = e' so that: $\frac{d\sigma}{dy} = \frac{2\pi\alpha^{2}}{Q^{4}}[1+(1-y)^{2}]s$

> One isotropic contribution from same handed spin directions. (1-y) contribution from opposite spin directions.

Calculating The Cross Section For NC DIS III

Calculation for Electron - Muon scattering applies to electron quark scattering. However we change the variables, the quark contains a fraction x' of momentum of the proton. meaning that $p \rightarrow x'p$ gives $s \rightarrow x's$ so that the scattering cross section is:

$$\frac{d\sigma}{dy} = \frac{2\pi\alpha^2}{Q^4} [1 + (1 - y)^2] x' s e_i^2$$

where e_i is the charge of the quark.

Now in the quark-parton model we can interpret lepton hadron scattering as the incoherent sum of lepton-parton scattering. so we can write the scattering cross section as:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{y}} = \frac{2\pi\alpha^2}{Q^4} [1 + (1 - y)^2] s \sum_i x' e_i^2 q_i(x)$$

where $q(x_i)$ is the probability that the struck quark *i* carries a fraction *x* of the hadron's momentum. The momentum distribution $xq_i(x)$ is called a parton distribution function. We can rewrite the double differential cross section, using $Q^2 = sxy$, as:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{Q}^2} = \frac{2\pi\alpha^2}{xQ^4} [1 + (1-y)^2] \sum_i x' e_i^2 q_i(x)$$

Calculating The Cross Section For NC DIS IV

Compare quark-parton Model result to general formulae for lepton-hadron scattering.

 $\mathrm{d}\sigma \sim \mathrm{L}^{\mathrm{e}}_{\mu\nu} W^{\mu\nu}$

where $W^{\mu\nu}$ is the hadronic tensor analogous to the lepton tensor. It must have the general form:

$$W^{\mu\nu} = -W_1 g^{\mu\nu} + \frac{W_2}{m^2} p^{\mu} p^{\nu} - i\epsilon^{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) + i(p^{\mu} q^{\nu} - p^{\nu} q^{\mu}) \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) + i(p^{\mu} q^{\nu} - p^{\nu} q^{\mu}) \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) + i(p^{\mu} q^{\nu} - p^{\nu} q^{\mu}) \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) + i(p^{\mu} q^{\nu} - p^{\nu} q^{\mu}) \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} + \frac{W_4}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} \frac{W_4}{2m^2} + \frac{W_4}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) \frac{W_4}{2m^2} \frac{W_4}{2m^$$

 $\epsilon^{\mu\nu\alpha\beta}$ is the totally antisymmetric rank 2 tensor which is +1(-1) when $\mu\nu\alpha\beta$ is an even (odd) permutation of 0123 and 0 otherwise.

The W_6 term disappears for unpolarised scattering since $L^{\mu\nu}$ is antisymmetric. For γ scattering the parity violating W_3 term can also be discarded.

Calculating The Cross Section For NC DIS V

$$W^{\mu\nu} = -W_1 g^{\mu\nu} + \frac{W_2}{m^2} p^{\mu} p^{\nu} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu})$$

We can further simplify the hadronic tensor using conservation of current at the hadronic vertex:

$$q_{\mu}W^{\mu\nu} = q_{\nu}W^{\mu\nu} = 0$$

giving:

$$W_5 = -\frac{p \cdot q}{q^2} W_2$$

and:

$$W_4 = \left(\frac{p \cdot q}{q^2}\right)^2 W_2 + \frac{M^2}{q^2} W_1$$

So that:

$$W^{\mu\nu} = W_1 \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) + W_2 \frac{1}{M^2} \left(p^{\mu} - \frac{p.q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p.q}{q^2} q^{\nu} \right)$$

Calculating The Cross Section For NC DIS VI

Following the calculation with this hadronic tensor (see e;g; Halzen and Martin) gives:

$$\frac{\mathrm{d}^2 \sigma^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{4\pi\alpha^2}{xQ^4} \left[y^2 x F_1(x, Q^2) + (1-y) F_2(x, Q^2) \right]$$

where

$$F_1(x,Q^2) = MW_1(\nu,Q^2), \nu = (p.q)$$

and

$$F_2(x,Q^2) = \nu W_2(\nu,Q^2) = \frac{p.q}{M} W_2(x,Q^2).$$
 define:

 $F_L = F_2 - 2xF_1$

then:

$$\frac{\mathrm{d}^2 \sigma^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[[1 + (1-y)^2] F_2(x,Q^2) - y^2 F_L(x,Q^2) \right]$$

Predictions of QPM

Compare our general result to the quark parton model result:

$$\frac{\mathrm{d}^2 \sigma^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[[1 + (1-y)^2] F_2(x,Q^2) - y^2 F_L(x,Q^2) \right]$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{Q}^2} = \frac{2\pi\alpha^2}{xQ^4} [1 + (1-y)^2] \sum_i x' e_i^2 q_i(x)$$

This implies that $F_2(x, Q^2) = \sum_i x' e_i^2 q_i(x)$ SCALING!

Another prediction is the Callan-Gross relationship $F_L = 0$:

$$2xF_1(x) = F_2(x)$$

This is a consequence of the partons having spin 1/2.

Full cross section includes Parity Violating term, neglected in this calculation.

Proton structure Functions

• Full expression for the double differential cross section for inclusive ep scattering:

 $\frac{\mathrm{d}^2 \sigma^{e^{\pm}p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[\left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) = \frac{2\pi\alpha^2}{xQ^4} \left[\left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right) = \frac{2\pi\alpha^2}{xQ^4} \left[\left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) = \frac{2\pi\alpha^2}{xQ^4} \left[\left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right) = \frac{2\pi\alpha^2}{xQ^4} \left[\left[Y_+ F_2(x, Q^2) \mp Y_- x F_3(x, Q^2) - y^2 F_L(x, Q^2) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right) \right] \left(1 + \delta_r(x, Q^2) \right) \right]$

 $Y_{\pm} = 1 \pm (1 - y)^2$ F_L is the Longitudinal Structure Function. xF_3 is the parity violating term. δ_r is the electroweak radiative correction.

• The structure function F_2 contains contributions from virtual photon and Z_0 exchange:

$$F_2 = F_2^{\text{em}} + \frac{Q^2}{(Q^2 + M_Z^2)} F_2^{\text{int}} + \frac{Q^4}{(Q^2 + M_Z^2)} F_2^{\text{wk}} = F_2^{\text{em}} (1 + \Delta F_2)$$

 F_2^{em} is the contribution from the photon. F_2^{wk} is the contribution from the Z_0 . F_2^{int} is the interference term.

Kinematic Regions of Structure Function Measurements

The Proton Structure Functions: F₂

Measurement of F_2 for $2.7 < Q^2 < 30000 \text{GeV}^2$ and 6×10^5 with statistical and systematic uncertainties below 2% in most of the (x, Q^2) region covered.

Good agreement with fixed target experiments at large x values and $Q^2 < 70 \text{GeV}^2$

The Proton Structure Functions: *F*₂

Measurement of F_2 for $2.7 < Q^2 < 30000 \text{GeV}^2$ and 6×10^5 with statistical and systematic uncertainties below 2% in most of the (x, Q^2) region covered.

- Strong scaling violations for x < 0.02
- Measured $x Q^2$ behaviour can be described by the DGLAP equations over the whole kinematic range.

The Proton Structure Functions: *xF*₃

- The parity violating part of Z-exchange (xF_3) in NC DIS makes a negative contribution to the e^+p and a positive contribution to the e^-p cross section.
- Can be measured by subtracting e^+p from e^-p cross section.
- Both cross sections available at HERA.
- SM expectation describes data well.

Comparison of Data and SM Predictions for NC DIS

x and Q^2 distributions show good agreement with the SM expectations at low values of x and Q^2 , but a small excess of events is seen at the high ends of both distributions.

Comparison of Data and SM Predictions for DIS

- Experimental and theoretical uncertainties:
 - Luminosity measurement: precision and calibration of the detector, effects from beam satellite bunches $\rightarrow 2.3\%$.
 - Detector simulation: uncertainties in the overall calorimeter energy scale and in the simulation of the CAL and CTD response to positrons $\rightarrow 4.4\%$.
 - Electroweak parameters: Relevant EW parameters have been measured to high accuracy and contribute a small uncertainty in the predicted cross section over the HERA kinematic range $\rightarrow 0.25\%$.
 - Radiative corrections: corrections due to initial state radiation convoluted with the experimental resolution produce uncertainties $\rightarrow < 2\%$
 - Structure functions: uncertainties in the fits to obtain the pSTF parametrisation"
 - * experimental uncertainties $\rightarrow \pm 6.2\%$
 - * Uncertainty of the quark-gluon coupling α_S used in the evolution to higher $Q^2 \rightarrow 1.9\%$
 - * total $\pm 6.5\%$
- Total systematic uncertainty $\rightarrow \pm 8.4\%$

Charged Current DIS

• The lowest order EW cross section for the reaction $e^+p \rightarrow \bar{\nu}_e X$ can be written as:

 $\frac{\mathrm{d}^2 \sigma^{\mathrm{CC}}(e^+ p)}{\mathrm{d}x \mathrm{d}Q^2} = \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2 \left\{ Y_+ F_2^{\mathrm{CC}}(x, Q^2) - Y_- x F_3^{\mathrm{CC}}(x, Q^2) - y^2 F_L^{\mathrm{CC}}(x, Q^2) \right\}$

with G_F the fermi constant and M_W the W mass.

- At LO QCD the structure functions F_2^{CC} and xF_3^{CC} measure sums and differences of quark and antiquark parton momentum distributions.
- For longitudinally unpolarised beams:

$$\begin{split} F_2^{\rm CC} &= x [d(x,Q^2) + s(x,Q^2) + \bar{u}(x,Q^2) + \bar{c}(x,Q^2)] \\ x F_3^{\rm CC} &= x [d(x,Q^2) + s(x,Q^2) - \bar{u}(x,Q^2) - \bar{c}(x,Q^2)] \end{split}$$

• F_L^{CC} is zero at LO but finite at NLO and has a negligible contribution to the cross section except at high values y (close to 1), where it can be as large as 10%.

Charged Current Deep Inelastic Scattering Event

Single-Differential Cross Sections in Inclusive CC

- SM prediction using CTEQ4D describes data well except for small excess over SM for dσ/dx at x ≥ 0.3.
- The prediction using a NLO QCD fit performed to fixed target and by low-Q² NC DIS data, describes the data well over the whole range measured.
- The e^+p CC DIS cross section is dominated by the *d*-quark contribution at high *x* (a larger d/u than previously assumed).
- Modification of the PDFs with an additional term yields a predicted $d\sigma/dx$ close to the NLO QCD fit.

Double-Differential Cross Sections in Inclusive CC

$$\tilde{\sigma} = \left[\frac{G_F^2}{2\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2}\right)^2\right]^{-1} \frac{\mathrm{d}^2 \sigma^{\mathrm{CC}}(e^+ p)}{\mathrm{d}x \mathrm{d}Q^2}$$

- CTEQ4D describes the data well, though there is a slight excess at the highest x value.
- The predictions from the NLO QCD fit at high x are higher than those from CTEQ4D.
- At LO QCD, $\tilde{\sigma}$ depends on the quark momentum distributions as:

 $\tilde{\sigma} = x[\bar{u} + \bar{c} + (1 - y^2)(d + s)]$

- For fixed Q^2 , $\tilde{\sigma}$ at low x is mainly sensitive to the antiquark combination $(\bar{u} + \bar{c})$, while at high x it is dominated by the quark combination (d + s)
- Both q and \bar{q} combinations are required to obtain a good description of the data.

Comparison of NC and CC Cross Sections

• At low Q^2 the CC cross section is much smaller than the NC cross section due to the relative strength of the weak force compared to the electromagnetic force:

 $\sigma^{
m NC} \propto rac{1}{Q^4}$, $\sigma^{
m CC} \propto rac{1}{(Q^2+M_W^2)^2}$

- The CC cross section decreases with Q² less rapidly than that for NC scattering, reflecting the behaviour of the W propagator as contrasted to the photon propagator which dominates NC scattering.
 At Q² ~ M_W², M_Z², the CC and NC cross sections
- At Q² ∼ M²_W, M²_Z, the CC and NC cross sections become comparable (approaching electroweak unification!).
- At very high Q², the rapid fall of both CC and NC cross sections with Q² is due to the effects of the W and Z propagators, the decrease of the parton densitities with increasing x and for CC, the (1−y)² term in the cross sections.

Electroweak Analysis

- The absolute magnitude of the CC cross section is determined by G_F and the PDFs
- The Q^2 dependence of the CC cross section includes the propagator $[M_W^2/(M_W^2+Q^2)^2]$
- a χ^2 fit to the measured differential cross section $d\sigma/dQ^2$ has been performed with G_F and M_W as free parameters.
- The results of the fit are:

 $G_F = 1.171 \pm 0.034 (\text{Sta.})^{+0.026}_{-0.032} (\text{Sys.})^{+0.016}_{-0.015} (\text{PDF}) \times 10^{-5} \text{ GeV}^{-2}$

and $M_W = 80.8^{+4.9}_{-4.5}$ (Sta.) $^{+5.0}_{-4.3}$ (Sys.) $^{+1.4}_{-1.3}$ (PDF) GeV

- Value of G_F obtained is in good agreement with the value of $G_F = (1.16639 \pm 0.00001) \times 10^{-5} \text{GeV}^{-2}$ obtained from muon decay \rightarrow universality of the CC interaction.
- The value of M_W obtained agrees with the value of $M_W = 80.419 \pm 0.056 \text{GeV}$ from fits to measurements of W production at TeVatron $(p\bar{p})$ and LEP $(e^+e^-) \rightarrow$ important experimental consistency check of the SM.

Example of a Search for New Physics at HERA: Single Top Production via FCNC

- Single Top Production (STP) via FCNC as a Standard Model Process:
 - Not a tree level SM process.
 - Small σ (GIM mechanism): ($\sigma < 1$ fb HERA, $\sigma \approx 10^{-9}$ fb LEP)
- Single Top Production via Anomalous FCNC:

$$-\Delta \mathcal{L}_{\text{eff}} = e \ e_t \ \overline{t} \ \frac{i\sigma_{\mu\nu}q^{\nu}}{\Lambda} \ \kappa_{tq\gamma} \ q \ A^{\mu} + \frac{g}{2\cos\theta_W} \ \overline{t} \ \gamma_{\mu} \ \frac{v_{tqZ}}{v_{tqZ}} \ q \ Z^{\mu} + \text{h.c.}$$

- Events at LEP or HERA attributed to STP must be from anomalous couplings.
- Would unambiguously signal new physics.

FCNC Search at the Tevatron

- CDF searched for $t \to q\gamma$ and $t \to qZ$ with $\mathcal{L} = 110 \text{ pb}^{-1}$.
- From SM expect 10^{-10} branching fraction.
- use $t\bar{t}$ events, one $t \rightarrow bW$.
- $\bullet \; tq\gamma$
 - Look for γj combination with 140 < M < 210 GeV +t $\rightarrow bW$ topologies.
 - no b tagged jet in γj combination.
 - main background $W + \gamma + 2$ or more jet events, Estimated using $W + \gamma$ event rate.
 - Branching fraction limit: $3.2\% \rightarrow k_{\gamma}^2 < 0.176$
- tqZ
 - One t quark goes to 3 jets other $t \to Zq \to l^+l^-q$
 - Require opposite charge leptons $75 < M_{ll} < 105$
 - Branching fraction limit: $33\% \rightarrow k_Z^2 < 0.533$

Searches at HERA I - I

- Signature of Single Top Production:
 - Isolated high p_T lepton in events with large missing transverse momentum)
 - Or 3 jets with $M_{jj} \approx M_W$, $M_{3j} \approx M_{top}$
- In leptonic channels main backgrounds are 2γ processes (μ), NC DIS and Single W Production.
- In hadronic channel, main background is QCD.
- Searches have been performed in both hadronic and leptonic channels, $\mathcal{L} \approx 120 \ pb^{-1}$.

Isolated High *P*_{*T*} **lepton event from H1**

Searches at HERA I - II: H1 Isolated Leptons

• Main excess is at high hadronic p_T - from a Heavy particle decay?.

Leptonic channel	Electron	Muon
p_T^{X} range	channel	channel
(GeV)	obs./expected (W)	obs./expected (W)
$p_T^{\rm X} < 12$	$5/6.40 \pm 0.79(70\%)$	
$12 < p_T^{\rm X} < 25$	$1/1.96 \pm 0.27$ (74%)	$2/1.11 \pm 0.19(85\%)$
$25 < p_T^{\rm X} < 40$	$1/0.95 \pm 0.14$ (86%)	$3/0.89 \pm 0.14$ (87%)
$p_T^X > 40$	$3/0.54 \pm 0.11(83\%)$	$3/0.55 \pm 0.12(93\%)$

Searches at HERA I - III: H1 Single Top

Top mass is reconstructed from invariant mass of $l\nu j$ combinations.

- Final Selection
 - Isolated l^+ . - $p_T^X > 25(35)$ GeV. - $M_T^{l\nu} > 10$ GeV
- Results
 - $-3 e, 2 \mu$ events compatible with STP.
 - expect 1.77 ± 0.46 from W production.

Searches at HERA I - IV: ZEUS Isolated Leptons + Single Top

• Kinematic distributions compatible with SM , no excess over SM observed

	e Channel	μ Channel
	Obs./Exp.	Obs./Exp.
preselection	$24/20.6^{+1.7}_{-4.6}$	$12/11.9^{+0.6}_{-0.7}$
$p_T^{\text{had}} > 25 \text{ GeV}$	$2/2.90^{+0.59}_{-0.32}$	$5/2.75^{+0.21}_{-0.21}$
$p_T^{\text{had}} > 40 \text{ GeV}$	$0/0.94^{+0.11}_{-0.10}$	$0/0.95^{+0.14}_{-0.10}$

Searches at HERA I - V: Hadronic Channel

- Search for $eu \to et \to ebW \to ebqq$.
- look for $M_{jj} \approx M_W$, make 3j Mass spectrum.
- After final cuts:

	H1(94-00)
Data	14
SM	19.6 ± 7.8
	ZEUS(95-00)
Data	ZEUS(95-00) 14

• No excess in either experiment.

Searches at HERA I - VI: $W \rightarrow$ **Jets**

- Leptonic excess from anomalous W production? ($\sigma_{SM} = 1 \text{pb}$)
- Check in hadronic channel.
- Select Events with 2+High E_T jets.
- Reconstruct invariant mass spectrum.
- No excess over SM seen.
- Limit (ZEUS):

 σ < 8.3 pb, does not eliminate possibility of anomalous W production.

• Isolated high P_T leptons in events with large missing P_T .

- 5 events observed in Data
- 3.5 events expected from SM backgrounds.
- 3.2 events expected from
- ZEUS 99-00 (Prel) limit: $\sigma(e^+p \rightarrow e^+WX < 2.8 \text{pb}).$
- cannot eliminate possibility of • Still anomolous W production.

Searches at HERA I: Summary

- Searches for Single Top Production performed by H1, ZEUS.
- In Leptonic channel H1 sees an excess of isolated lepton events compatible with STP:
 - H1 : 5 seen , expect 1.8.
 - ZEUS: 0 seen, expect 1.0.
- No excess in hadronic channel.
- ZEUS sets strongest limit on photon coupling (0.2).
- ZEUS latest results add sensitivity to v_{tuZ}
- No sensitivity at HERA to tcZ/γ couplings.
- Waiting for HERA II:
 - 10x more luminosity.
 - Improved detectors.

Lecture II : Summary

- HERA offers the chance to study DIS in kinematic regions previously unattainable.
- A rich variety of physics is available for study.
- The structure of the proton is understandable in terms of the independent structure functions F_2, F_3, F_L .
- Electroweak physics can also be studied with high precision.
- HERA also offers the chance to search for physics beyond the standard model, in a manner competitive with LEP, and TeVatron.
- One example of new physics in which HERA is particulary capable of excluding or confirming are FCNC by searching for single top Production.