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• QCD Introduction.

• HERA Accelerator.

• Experiments.

• Deep Inelastic Scattering.

• Proton Structure.

• Photon Structure.

• αS measurements.

• Beyond the SM.
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The HERA Accelerator

• HERA is the onlyep collider in
existence.

• Collides 920 GeV protons and
27.52 GeV protons at the IRs of
H1 and ZEUS.

• Offers an order of magnitude
more COM energy than previous
(fixed target) DIS experiments.

• Allows probing of very highQ2

and lowx regions of DIS.

• Also HERMES - A fixed target
experiment studying nucleon spin
structure.
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The HERA Experiments

• ZEUS/H1 started taking data in
1992.

• ZEUS optimised for precision
measurements of the hadronic
final state.

• H1 optimised for precision mea-
surements of the scattered lepton.
(fixed target) DIS experiments.

• HERA experiments have pub-
lished on a wide variety of topics.

• 2003-2007 is HERA II running
with luminosity upgrade + po-
larised leptons.

Software :SDRC-IDEAS level VI.i

Performed by :   Carsten Hartmann

Status :                      October 1993
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HERA Physics

A rich variety of physics topics is available for Study at HERA, Zeus Physics Working Groups:
• High Q2 :

– Structure of Proton.

– Electroweak physics: NC/CC DIS cross
section.

– Rare Standard Model processes.

– Searches for Physics beyond the
standard model.

• Heavy Flavour :

– Production of Charm, Beauty quarks.

– Hadronisation of heavy quarks.

– charm,beauty structure functions.

• QCD/Hadronic Final State :

– Photon structure.

– Jet production.

– Particle production.

– Measurements ofαS.

• Diffractive/Low x :

– Study of events with a large rapidity gap.

– Vector Meson production.
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Deep Inelastic Scattering

• DIS of leptons on nucleons has been an important tool for understanding nucleon structure
and many elements of the SM.

• At HERA DIS processes are studied at
√

s ≈ 320 GeV andQ2 > MW , MZ.

• Unique tests of the SM and it’s extensions are possible in this regime.

• Neutral and charged current interactions up toααS :
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Neutral Current Deep Inelastic Scattering Event

XY View
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Calculating The Cross Section For NC DIS I

First consider elastic electron-muon scattering (neglectmasses)

−igλν
q2

e(k, σ)

µ(p, ρ)

e(k′, σ′)

µ(p′, ρ′)

ieγν

ieγλ
lepton currents:

jν
e = ieū(k′, σ′)γνu(k, σ) (1)

jλ
µ = ieū(p′, ρ′)γλu(p′, ρ′) (2)

propagator:
−igλν

q2
(3)

M = iee′
q2 [ū(k′, σ′)γλu(k, σ)][ū(p′, ρ′)λµu(p, ρ)]

For the unpolarised cross section, the initial spin states must be averaged over.

1
4

∑

spins
|M|2 = e2e′2

q4 Lλν
e Lµ

λν

Where:Lλν
e = 2(k′λkν + k′νkλ − (k′.k)gλν)
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Calculating The Cross Section For NC DIS II

Contraction of the leptonic tensors:
Lλν

e = 2(k′λkν + k′νkλ − (k′.k)gλν) , Lµ
λν = 2(p′λpν + p′νpλ − (p′.p)gλν)

Le.L
µ = 8[(k′.p′)(k.p) + (k′.p)(k′.k)]

Can be rewritten in terms of the Mandelstam variables:

s = (k + p)2 = (k′ + p′)2 , t = (k − k′)2 = (p′ − p)2 , u = (k − p′)2 = (k′ − p)2

asLe.L
µ = 2(s2 + u2). and substitutey = (p.q)

(p.k)
= u

s
+ 1

1
4

∑

spins
|M|2 = e2e′2

Q4 2s2[1 + (1 − y)2]

Finally, putting in phase space and flux factor gives:
dσ
dy = e2e′2

8πQ4 [1 + (1 − y)2]s

of course in this casee = e′ so that:
dσ
dy

= 2πα2

Q4 [1 + (1 − y)2]s

One isotropic contribution from same handed spin directions.
(1-y) contribution from opposite spin directions.
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Calculating The Cross Section For NC DIS III

Calculation for Electron - Muon scattering applies to electron quark scattering.However we
change the variables, the quark contains a fractionx′ of momentum of the proton. meaning
thatp → x′p givess → x′s so that the scattering cross section is:

dσ
dy = 2πα2

Q4 [1 + (1 − y)2]x′se2
i

whereei is the charge of the quark.

Now in the quark-parton model we can interpret lepton hadronscattering as the incoherent
sum of lepton-parton scattering. so we can write the scattering cross section as:

dσ
dxdy = 2πα2

Q4 [1 + (1 − y)2]s ∑

i
x′e2

i qi(x)

whereq(xi) is the probability that the struck quarki carries a fractionx of the hadron’s
momentum. The momentum distributionxqi(x) is called a parton distribution function. We
can rewrite the double differential cross section, usingQ2 = sxy, as:

dσ
dxdQ2 = 2πα2

xQ4 [1 + (1 − y)2] ∑
i
x′e2

i qi(x)
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Calculating The Cross Section For NC DIS IV

Compare quark-parton Model result to general formulae for lepton-hadron scattering.

dσ ∼ Le
µνW

µν

whereW µν is the hadronic tensor analogous to the lepton tensor. It must have the general
form:

W µν = −W1g
µν + W2

m2p
µpν − iεµναβpαqβ

W3
2m2 + W4

m2q
µqν + W5

m2(p
µqν + pνqµ) + i(pµqν − pνqµ) W6

2m2

εµναβ is the totally antisymmetric rank 2 tensor which is +1(-1) whenµναβ is an even (odd)
permutation of 0123 and 0 otherwise.

TheW6 term disappears for unpolarised scattering sinceLµν is antissymetric. Forγ scattering
the parity violatingW3 term can also be discarded.
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Calculating The Cross Section For NC DIS V

W µν = −W1g
µν + W2

m2p
µpν + W4

m2q
µqν + W5

m2 (p
µqν + pνqµ)

We can further simplify the hadronic tensor using conservation of current at the hadronic
vertex:

qµW
µν = qνW

µν = 0

giving:

W5 = −p.q
q2 W2

and:

W4 =
(

p.q
q2

)2
W2 + M2

q2 W1

So that:

W µν = W1

(

−gµν + qµqν

q2

)

+ W2
1

M2

(

pµ − p.q
q2 qµ

) (

pν − p.q
q2 qν

)
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Calculating The Cross Section For NC DIS VI

Following the calculation with this hadronic tensor (see e;g; Halzen and Martin) gives:

d2σe±p

dxdQ2 = 4πα2

xQ4

[

y2xF1(x,Q2) + (1 − y)F2(x, Q2)
]

where

F1(x,Q2) = MW1(ν, Q
2), ν = (p.q)

and

F2(x,Q2) = νW2(ν, Q
2) = p.q

M
W2(x, Q2).

define:

FL = F2 − 2xF1

then:

d2σe±p

dxdQ2 = 2πα2

xQ4

[

[1 + (1 − y)2]F2(x,Q2) − y2FL(x,Q2)
]
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Predictions of QPM

Compare our general result to the quark parton model result:

d2σe±p

dxdQ2 = 2πα2

xQ4

[

[1 + (1 − y)2]F2(x,Q2) − y2FL(x,Q2)
]

dσ
dxdQ2 = 2πα2

xQ4 [1 + (1 − y)2] ∑
i
x′e2

i qi(x)

This implies thatF2(x,Q2) = ∑

i
x′e2

i qi(x) SCALING!

Another prediction is the Callan-Gross relationshipFL = 0:

2xF1(x) = F2(x)

This is a consequence of the partons having spin 1/2.

Full cross section includes Parity Violating term,neglected in this calculation.
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Proton structure Functions

• Full expression for the double differential cross section for inclusive ep scattering:

d2σe±p

dxdQ2 = 2πα2

xQ4

[

[Y+F2(x,Q2) ∓ Y−xF3(x, Q2) − y2FL(x,Q2)
]

(1 + δr(x, Q2))

Y± = 1 ± (1 − y)2

FL is the Longitudinal Structure Function.
xF3 is the parity violating term.
δr is the electroweak radiative correction.

• The structure functionF2 contains contributions from virtual photon andZ0 exchange:

F2 = F em
2 + Q2

(Q2+M2
Z)

F int
2 + Q4

(Q2+M2
Z)

Fwk
2 = F em

2 (1 + ∆F2)

F em
2 is the contribution from the photon.

Fwk
2 is the contribution from theZ0.

F int
2 is the interference term.
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Kinematic Regions of Structure Function Measurements

• HERA: ZEUS, NC cross sections:
x > 10−6 and0.05 < Q2 < 105 GeV2

• Fixed Target

– µ-inducedF2 from BCDMS, NMC,
E665.

– Deuterium-target data from NMC and
E665.

– NMC data onF 2
D/F p

2

– CCFRxF3 data.
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The Proton Structure Functions: F2

Measurement ofF2 for 2.7 < Q2 < 30000GeV2 and6 × 105 with statistical and systematic
uncertainties below 2% in most of the(x,Q2) region covered.
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The Proton Structure Functions: F2

Measurement ofF2 for 2.7 < Q2 < 30000GeV2 and6 × 105 with statistical and systematic
uncertainties below 2% in most of the(x,Q2) region covered.
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• Strong scaling violations forx < 0.02

• Measured x − Q2 behaviour can be
described by the DGLAP equations over
the whole kinematic range.
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The Proton Structure Functions: xF3

• The parity violating part ofZ-exchange (xF3) in NC DIS makes a negative contribution
to thee+p and a positive contribution to thee−p cross section.

• Can be measured by subtractinge+p from e−p cross section.

• Both cross sections available at HERA.

• SM expectation describes data well.
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Comparison of Data and SM Predictions for NC DIS

x andQ2 distributions show good agreement with the SM expectationsat low values ofx and
Q2, but a small excess of events is seen at the high ends of both distributions.
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Comparison of Data and SM Predictions for DIS

• Experimental and theoretical uncertainties:

– Luminosity measurement: precision and calibration of the detector, effects from beam
satellite bunches→ 2.3%.

– Detector simulation: uncertainties in the overall calorimeter energy scale and in the
simulation of the CAL and CTD response to positrons→ 4.4%.

– Electroweak parameters: Relevant EW parameters have been measured to high accuracy
and contribute a small uncertainty in the predicted cross section over the HERA
kinematic range→ 0.25%.

– Radiative corrections: corrections due to initial state radiation convoluted with the
experimental resolution produce uncertainties→< 2%

– Structure functions: uncertainties in the fits to obtain thepSTF parametrisation”

∗ experimental uncertainties→ ±6.2%

∗ Uncertainty of the quark-gluon couplingαS used in the evolution to higherQ2

→ 1.9%

∗ total±6.5%

• Total systematic uncertainty→ ±8.4%
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Charged Current DIS

• The lowest order EW cross section for the reactione+p → ν̄eX can be written as:

d2σCC(e+p)
dxdQ2 = G2

F
4πx





M2
W

M2
W+Q2





2
{Y+FCC

2 (x,Q2) − Y−xFCC
3 (x, Q2) − y2FCC

L (x, Q2)}

with GF the fermi constant andMW theW mass.

• At LO QCD the structure functionsFCC
2 andxFCC

3 measure sums and differences of quark
and antiquark parton momentum distributions.

• For longitudinally unpolarised beams:

FCC
2 = x[d(x,Q2) + s(x,Q2) + ū(x,Q2) + c̄(x, Q2)]

xFCC
3 = x[d(x,Q2) + s(x, Q2) − ū(x,Q2) − c̄(x, Q2)]

• FCC
L is zero at LO but finite at NLO and has a negligible contribution to the cross section

except at high values y (close to 1), where it can be as large as10%.
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Charged Current Deep Inelastic Scattering Event

XY View ZR View
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Single-Differential Cross Sections in Inclusive CC

• SM prediction using CTEQ4D
describes data well except for
small excess over SM fordσ/dx
atx ≥ 0.3.

• The prediction using a NLO QCD
fit performed to fixed target and
low-Q2 NC DIS data, describes
the data well over the whole range
measured.

• The e+p CC DIS cross section
is dominated by thed-quark
contribution at highx (a larger
d/u than previously assumed).

• Modification of the PDFs with an
additional term yields a predicted
dσ/dx close to the NLO QCD fit.
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Double-Differential Cross Sections in Inclusive CC

σ̃ =






G2
F

2πx





M2
W

M2
W+Q2





2






−1
d2σCC(e+p)

dxdQ2

• CTEQ4D describes the data well, though there is
a slight excess at the highestx value.

• The predictions from the NLO QCD fit at highx
are higher than those from CTEQ4D.

• At LO QCD, σ̃ depends on the quark momentum
distributions as:

σ̃ = x[ū + c̄ + (1 − y2)(d + s)]

• For fixedQ2, σ̃ at lowx is mainly sensitive to the
antiquark combination(ū+ c̄), while at highx it
is dominated by the quark combination(d + s)

• Bothq andq̄ combinations are required to obtain
a good description of the data.
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Comparison of NC and CC Cross Sections

• At low Q2 the CC cross section is much smaller than the NC cross sectiondue to the
relative strength of the weak force compared to the electromagnetic force:

σNC ∝ 1
Q4 , σCC ∝ 1

(Q2+M2
W )2

• The CC cross section decreases withQ2 less rapidly
than that for NC scattering, reflecting the behaviour
of the W propagator as contrasted to the photon
propagator which dominates NC scattering.

• At Q2 ∼ M 2
W , M 2

Z, the CC and NC cross sections
become comparable (approaching electroweak unifi-
cation!).

• At very highQ2, the rapid fall of both CC and NC
cross sections withQ2 is due to the effects of the
W and Z propagators, the decrease of the parton
densitities with increasingx and for CC, the(1−y)2

term in the cross sections.
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Electroweak Analysis

• The absolute magnitude of the CC cross section is determinedby GF and the PDFs

• TheQ2 dependence of the CC cross section includes the propagator[M 2
W/(M 2

W + Q2)2]

• a χ2 fit to the measured differential cross sectiondσ/dQ2 has been performed withGF

andMW as free parameters.

• The results of the fit are:
GF = 1.171 ± 0.034(Sta.)+0.026

−0.032(Sys.)+0.016
−0.015(PDF) × 10−5 GeV−2

and MW = 80.8+4.9
−4.5(Sta.)+5.0

−4.3(Sys.)+1.4
−1.3(PDF) GeV

• Value ofGF obtained is in good agreement with the value
of GF = (1.16639± 0.00001)× 10−5GeV−2 obtained
from muon decay→ universality of the CC interaction.

• The value ofMW obtained agrees with the value of
MW = 80.419 ± 0.056GeV from fits to measurements
of W production at TeVatron (pp̄) and LEP (e+e−) →
important experimental consistency check of the SM.
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Example of a Search for New Physics at HERA: Single Top Production via FCNC

• Single Top Production (STP) via FCNC as a Standard Model Process:

– Not a tree level SM process.

– Smallσ (GIM mechanism): (σ < 1 fb HERA,σ ≈ 10−9 fb LEP )

• Single Top Production via Anomalous FCNC:

– ∆Leff = e et t iσµνq
ν

Λ
κtqγ q Aµ + g

2 cos θW
t γµ vtqZ q Zµ + h.c.

– Events at LEP or HERA attributed to STPmust be from anomalous couplings.

– Would unambiguously signal new physics.
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FCNC Search at the Tevatron

• CDF searched fort → qγ and t → qZ with L = 110 pb−1.

• From SM expect10−10 branching fraction.

• usett̄ events, onet → bW .

• tqγ

– Look for γj combination with140 < M < 210 GeV +t → bW topologies.

– nob tagged jet inγj combination.

– main backgroundW + γ + 2 or more jet events, Estimated usingW + γ event rate.

– Branching fraction limit:3.2% → k2
γ < 0.176

• tqZ

– Onet quark goes to 3 jets othert → Zq → l+l−q

– Require opposite charge leptons75 < Mll < 105

– Branching fraction limit:33% → k2
Z < 0.533
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Searches at HERA I - I

Signal Background (W production)
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• Signature of Single Top Production:

– Isolated highpT lepton in events with large missing transverse momentum)

– Or 3 jets withMjj ≈ MW , M3j ≈ Mtop

• In leptonic channels main backgrounds are2γ processes (µ), NC DIS and SingleW
Production.

• In hadronic channel, main background is QCD.

• Searches have been performed in both hadronic and leptonic channels,L ≈ 120 pb−1.



QCD Physics and HERA - James Ferrando, February 2005. 30

Isolated High PT lepton event from H1
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Searches at HERA I - II: H1 Isolated Leptons
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• Main excess is at high hadronicpT - from a Heavy particle decay?.

Leptonic channel Electron Muon

pX
T range channel channel
(GeV) obs./expected (W ) obs./expected (W )

pX
T < 12 5/6.40 ± 0.79(70%) —

12 < pX
T < 25 1/1.96 ± 0.27(74%) 2/1.11 ± 0.19(85%)

25 < pX
T < 40 1/0.95 ± 0.14(86%) 3/0.89 ± 0.14(87%)

pX
T > 40 3/0.54 ± 0.11(83%) 3/0.55 ± 0.12(93%)
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Searches at HERA I - III: H1 Single Top

Top mass is reconstructed
from invariant mass oflνj
combinations.

• Final Selection

– Isolatedl+.

– pX
T > 25(35) GeV.

– M lν
T > 10 GeV

• Results

– 3 e, 2µ events compat-
ible with STP.

– expect 1.77 ± 0.46
from W production.
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Searches at HERA I - IV: ZEUS Isolated Leptons + Single Top

• Kinematic distributions compatible with SM ,no excess overSM observed

e Channel µ Channel
Obs./Exp. Obs./Exp.

preselection 24/20.6+1.7
−4.6 12/11.9+0.6

−0.7

phad
T > 25 GeV 2/2.90+0.59

−0.32 5/2.75+0.21
−0.21

phad
T > 40 GeV 0/0.94+0.11

−0.10 0/0.95+0.14
−0.10
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Searches at HERA I - V: Hadronic Channel

ZEUS

• Search foreu → et → ebW → ebqq.

• look for Mjj ≈ MW , make 3j Mass spectrum.

• After final cuts:

H1(94-00)

Data 14
SM 19.6 ± 7.8

ZEUS(95-00)

Data 14
SM 17.6+1.8

−1.2

• No excess in either experiment.
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Searches at HERA I - VI: W → Jets
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• Leptonic excess from
anomalous W produc-
tion? (σSM = 1pb)

• Check in hadronic chan-
nel.

• Select Events with 2+
High ET jets.

• Reconstruct invariant
mass spectrum.

• No excess over SM seen.

• Limit (ZEUS):
σ < 8.3 pb, does not
eliminate possibility of
anomalous W production.
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Searches at HERA I - VII: W → eνe

• Isolated highPT leptons in events with
large missingPT .

• 5 events observed in Data

• 3.5 events expected from SM backgrounds.

• 3.2 events expected from

• ZEUS 99-00 (Prel) limit:
σ(e+p → e+WX < 2.8pb).

• Still cannot eliminate possibility of
anomolousW production.



QCD Physics and HERA - James Ferrando, February 2005. 37

Searches at HERA I: Summary

• Searches for Single Top Production performed by H1 , ZEUS.

• In Leptonic channel H1 sees an excess of isolated lepton events compatible with STP:

– H1 : 5 seen , expect 1.8.

– ZEUS: 0 seen, expect 1.0.

• No excess in hadronic
channel.

• ZEUS sets strongest limit
on photon coupling (0.2).

• ZEUS latest results add
sensitivity tovtuZ

• No sensitivity at HERA to
tcZ/γ couplings.

• Waiting for HERA II:

– 10x more luminosity.

– Improved detectors.
γtuκ
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Lecture II : Summary

• HERA offers the chance to study DIS in kinematic regions previously unattainable.

• A rich variety of physics is available for study.

• The structure of the proton is understandable in terms of theindependent structure functions
F2, F3, FL.

• Electroweak physics can also be studied with high precision.

• HERA also offers the chance to search for physics beyond the standard model, in a manner
competitive with LEP, and TeVatron.

• One example of new physics in which HERA is particulary capable of excluding or
confirming are FCNC by searching for single top Production.


