QCD Physics and HERA - Lecture II

James Ferrando - ZEUS Collaboration.

 8/2/2005.- QCD Introduction.
- HERA Accelerator.
- Experiments.
- Deep Inelastic Scattering.
- Proton Structure.
- Photon Structure.
- α_{S} measurements.

- Beyond the SM.

The HERA Accelerator

- HERA is the only ep collider in existence.
- Collides 920 GeV protons and 27.52 GeV protons at the IRs of H1 and ZEUS.
- Offers an order of magnitude more COM energy than previous (fixed target) DIS experiments.
- Allows probing of very high Q^{2} and low x regions of DIS.
- Also HERMES - A fixed target experiment studying nucleon spin structure.

The HERA Experiments

- ZEUS/H1 started taking data in 1992.
- ZEUS optimised for precision measurements of the hadronic final state.
- H1 optimised for precision measurements of the scattered lepton. (fixed target) DIS experiments.
- HERA experiments have published on a wide variety of topics.
- 2003-2007 is HERA II running with luminosity upgrade + polarised leptons.

HERA Physics

A rich variety of physics topics is available for Study at HERA, Zeus Physics Working Groups:

- High Q^{2} :
- Structure of Proton.
- Electroweak physics: NC/CC DIS cross section.
- Rare Standard Model processes.
- Searches for Physics beyond the standard model.
- Heavy Flavour:
- Production of Charm, Beauty quarks.
- Hadronisation of heavy quarks.
- charm, beauty structure functions.
- QCD/Hadronic Final State :
- Photon structure.
- Jet production.
- Particle production.
- Measurements of α_{S}.
- Diffractive/Low x :
- Study of events with a large rapidity gap.
- Vector Meson production.

Deep Inelastic Scattering

- DIS of leptons on nucleons has been an important tool for understanding nucleon structure and many elements of the SM.
- At HERA DIS processes are studied at $\sqrt{s} \approx 320 \mathrm{GeV}$ and $Q^{2}>M_{W}, M_{Z}$.
- Unique tests of the $S M$ and it's extensions are possible in this regime.
- Neutral and charged current interactions up to $\alpha \alpha_{\mathrm{S}}$:

Neutral Current Deep Inelastic Scattering Event

Calculating The Cross Section For NC DIS I

First consider elastic electron-muon scattering (neglect masses)

lepton currents:

$$
\begin{align*}
j_{e}^{\nu} & =i e \bar{u}\left(k^{\prime}, \sigma^{\prime}\right) \gamma^{\nu} u(k, \sigma) \tag{1}\\
j_{\mu}^{\lambda} & =i e \bar{u}\left(p^{\prime}, \rho^{\prime}\right) \gamma^{\lambda} u\left(p^{\prime}, \rho^{\prime}\right) \tag{2}
\end{align*}
$$

propagator:

$$
\begin{equation*}
\frac{-i g_{\lambda \nu}}{q^{2}} \tag{3}
\end{equation*}
$$

$$
\mathcal{M}=i \frac{e e^{\prime}}{q^{2}}\left[\bar{u}\left(k^{\prime}, \sigma^{\prime}\right) \gamma_{\lambda} u(k, \sigma)\right]\left[\bar{u}\left(p^{\prime}, \rho^{\prime}\right) \lambda^{\mu} u(p, \rho)\right]
$$

For the unpolarised cross section, the initial spin states must be averaged over.

$$
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{e^{2} e^{\prime 2}}{q^{4}} L_{e}^{\lambda \nu} L_{\lambda \nu}^{\mu}
$$

Where: $L_{e}^{\lambda \nu}=2\left(k^{\prime \lambda} k^{\nu}+k^{\prime \nu} k^{\lambda}-\left(k^{\prime} . k\right) g^{\lambda \nu}\right)$

Calculating The Cross Section For NC DIS II

Contraction of the leptonic tensors:

$$
\begin{gathered}
L_{e}^{\lambda \nu}=2\left(k^{\prime \lambda} k^{\nu}+k^{\prime \nu} k^{\lambda}-\left(k^{\prime} . k\right) g^{\lambda \nu}\right), L_{\lambda \nu}^{\mu}=2\left(p_{\lambda}^{\prime} p_{\nu}+p^{\prime \nu} p_{\lambda}-\left(p^{\prime} . p\right) g_{\lambda \nu}\right) \\
L_{e} \cdot L^{\mu}=8\left[\left(k^{\prime} . p^{\prime}\right)(k . p)+\left(k^{\prime} . p\right)\left(k^{\prime} . k\right)\right]
\end{gathered}
$$

Can be rewritten in terms of the Mandelstam variables:

$$
\begin{gathered}
s=(k+p)^{2}=\left(k^{\prime}+p^{\prime}\right)^{2}, t=\left(k-k^{\prime}\right)^{2}=\left(p^{\prime}-p\right)^{2}, u=\left(k-p^{\prime}\right)^{2}=\left(k^{\prime}-p\right)^{2} \\
\text { as } L_{e} . L^{\mu}=2\left(s^{2}+u^{2}\right) . \text { and substitute } y=\frac{(p . q)}{(p . k)}=\frac{u}{s}+1 \\
\frac{1}{4} \sum_{\text {spins }}|\mathcal{M}|^{2}=\frac{e^{2} e^{\prime 2}}{Q^{4}} 2 s^{2}\left[1+(1-y)^{2}\right]
\end{gathered}
$$

Finally, putting in phase space and flux factor gives:

$$
\frac{\mathrm{d} \sigma}{\mathrm{dy}}=\frac{e^{2} e^{\prime 2}}{8 \pi Q^{4}}\left[1+(1-y)^{2}\right] s
$$

$$
\text { of course in this case } e=e^{\prime} \text { so that: }
$$

$$
\frac{\mathrm{d} \sigma}{\mathrm{dy}}=\frac{2 \pi \alpha^{2}}{Q^{4}}\left[1+(1-y)^{2}\right] s
$$

One isotropic contribution from same handed spin directions.
(1-y) contribution from opposite spin directions.

Calculating The Cross Section For NC DIS III

Calculation for Electron - Muon scattering applies to electron quark scattering.However we change the variables, the quark contains a fraction x^{\prime} of momentum of the proton. meaning that $p \rightarrow x^{\prime} p$ gives $s \rightarrow x^{\prime} s$ so that the scattering cross section is:

$$
\frac{\mathrm{d} \sigma}{\mathrm{dy}}=\frac{2 \pi \alpha^{2}}{Q^{4}}\left[1+(1-y)^{2}\right] x^{\prime} s e_{i}^{2}
$$

where e_{i} is the charge of the quark.
Now in the quark-parton model we can interpret lepton hadron scattering as the incoherent sum of lepton-parton scattering. so we can write the scattering cross section as:

$$
\frac{\mathrm{d} \sigma}{\mathrm{dxdy}}=\frac{2 \pi \alpha^{2}}{Q^{4}}\left[1+(1-y)^{2}\right] s \sum_{i} x^{\prime} e_{i}^{2} q_{i}(x)
$$

where $q\left(x_{i}\right)$ is the probability that the struck quark i carries a fraction x of the hadron's momentum. The momentum distribution $x q_{i}(x)$ is called a parton distribution function. We can rewrite the double differential cross section, using $Q^{2}=s x y$, as:

$$
\frac{\mathrm{d} \sigma}{\mathrm{dxd} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[1+(1-y)^{2}\right] \sum_{i} x^{\prime} e_{i}^{2} q_{i}(x)
$$

Calculating The Cross Section For NC DIS IV

Compare quark-parton Model result to general formulae for lepton-hadron scattering.

$$
\mathrm{d} \sigma \sim \mathrm{~L}_{\mu \nu}^{\mathrm{e}} W^{\mu \nu}
$$

where $W^{\mu \nu}$ is the hadronic tensor analogous to the lepton tensor. It must have the general form:

$$
W^{\mu \nu}=-W_{1} g^{\mu \nu}+\frac{W_{2}}{m^{2}} p^{\mu} p^{\nu}-i \epsilon^{\mu \nu \alpha \beta} p_{\alpha} q_{\beta} \frac{W_{3}}{2 m^{2}}+\frac{W_{4}}{m^{2}} q^{\mu} q^{\nu}+\frac{W_{5}}{m^{2}}\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right)+i\left(p^{\mu} q^{\nu}-p^{\nu} q^{\mu}\right) \frac{W_{6}}{2 m^{2}}
$$

$\epsilon^{\mu \nu \alpha \beta}$ is the totally antisymmetric rank 2 tensor which is $+1(-1)$ when $\mu \nu \alpha \beta$ is an even (odd) permutation of 0123 and 0 otherwise.
The W_{6} term disappears for unpolarised scattering since $L^{\mu \nu}$ is antissymetric. For γ scattering the parity violating W_{3} term can also be discarded.

Calculating The Cross Section For NC DIS V

$$
W^{\mu \nu}=-W_{1} g^{\mu \nu}+\frac{W_{2}}{m^{2}} p^{\mu} p^{\nu}+\frac{W_{4}}{m^{2}} q^{\mu} q^{\nu}+\frac{W_{5}}{m^{2}}\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right)
$$

We can further simplify the hadronic tensor using conservation of current at the hadronic vertex:

$$
q_{\mu} W^{\mu \nu}=q_{\nu} W^{\mu \nu}=0
$$

giving:

$$
W_{5}=-\frac{p . q}{q^{2}} W_{2}
$$

and:

$$
W_{4}=\left(\frac{p . q}{q^{2}}\right)^{2} W_{2}+\frac{M^{2}}{q^{2}} W_{1}
$$

So that:

$$
W^{\mu \nu}=W_{1}\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+W_{2} \frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right)
$$

Calculating The Cross Section For NC DIS VI

Following the calculation with this hadronic tensor (see e;g; Halzen and Martin) gives:

$$
\frac{\mathrm{d}^{2} \sigma^{e^{ \pm} p}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{4 \pi \alpha^{2}}{x Q^{4}}\left[y^{2} x F_{1}\left(x, Q^{2}\right)+(1-y) F_{2}\left(x, Q^{2}\right)\right]
$$

where
$F_{1}\left(x, Q^{2}\right)=M W_{1}\left(\nu, Q^{2}\right), \nu=(p . q)$
and
$F_{2}\left(x, Q^{2}\right)=\nu W_{2}\left(\nu, Q^{2}\right)=\frac{p \cdot q}{M} W_{2}\left(x, Q^{2}\right)$.
define:
$F_{L}=F_{2}-2 x F_{1}$
then:

$$
\frac{\mathrm{d}^{2} \sigma^{e^{ \pm} p}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left[1+(1-y)^{2}\right] F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)\right]
$$

Predictions of QPM

Compare our general result to the quark parton model result:

$$
\begin{gathered}
\frac{\mathrm{d}^{2} \sigma^{e^{ \pm} p}}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left[1+(1-y)^{2}\right] F_{2}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)\right] \\
\frac{\mathrm{d} \sigma}{\mathrm{dxdQ}}{ }^{2}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[1+(1-y)^{2}\right] \sum_{i} x^{\prime} e_{i}^{2} q_{i}(x)
\end{gathered}
$$

This implies that $F_{2}\left(x, Q^{2}\right)=\sum_{i} x^{\prime} e_{i}^{2} q_{i}(x)$ SCALING!
Another prediction is the Callan-Gross relationship $F_{L}=0$:

$$
2 x F_{1}(x)=F_{2}(x)
$$

This is a consequence of the partons having spin 1/2.
Full cross section includes Parity Violating term,neglected in this calculation.

Proton structure Functions

- Full expression for the double differential cross section for inclusive ep scattering:

$$
\frac{\mathrm{d}^{2} e^{e^{\prime}} p}{\mathrm{~d} x \mathrm{~d} Q^{2}}=\frac{2 \pi \alpha^{2}}{x Q^{4}}\left[\left[Y_{+} F_{2}\left(x, Q^{2}\right) \mp Y_{-} x F_{3}\left(x, Q^{2}\right)-y^{2} F_{L}\left(x, Q^{2}\right)\right]\left(1+\delta_{r}\left(x, Q^{2}\right)\right)\right.
$$

$Y_{ \pm}=1 \pm(1-y)^{2}$
F_{L} is the Longitudinal Structure Function.
$x F_{3}$ is the parity violating term.
δ_{r} is the electroweak radiative correction.

- The structure function F_{2} contains contributions from virtual photon and Z_{0} exchange:

$$
F_{2}=F_{2}^{\mathrm{em}}+\frac{Q^{2}}{\left(Q^{2}+M_{Z}^{2}\right)} F_{2}^{\mathrm{int}}+\frac{Q^{4}}{\left(Q^{2}+M_{Z}^{2}\right)} F_{2}^{\mathrm{wk}}=F_{2}^{\mathrm{em}}\left(1+\Delta F_{2}\right)
$$

F_{2}^{em} is the contribution from the photon.
F_{2}^{wk} is the contribution from the Z_{0}.
$F_{2}^{\text {int }}$ is the interference term.

Kinematic Regions of Structure Function Measurements

- HERA: ZEUS, NC cross sections:
$x>10^{-6}$ and $0.05<Q^{2}<10^{5} \mathrm{GeV}^{2}$
- Fixed Target
- μ-induced F_{2} from BCDMS, NMC, E665.
- Deuterium-target data from NMC and E665.
- NMC data on F_{D}^{2} / F_{2}^{p}
- CCFR $x F_{3}$ data.
$x>6.10^{-4}$ and $0.2<Q^{2}<200 \mathrm{GeV}^{2}$

The Proton Structure Functions: F_{2}

Measurement of F_{2} for $2.7<Q^{2}<30000 \mathrm{GeV}^{2}$ and 6×10^{5} with statistical and systematic uncertainties below 2% in most of the $\left(x, Q^{2}\right)$ region covered.

Good agreement with fixed target experiments at large x values and $Q^{2}<70 \mathrm{GeV}^{2}$

The Proton Structure Functions: F_{2}

Measurement of F_{2} for $2.7<Q^{2}<30000 \mathrm{GeV}^{2}$ and 6×10^{5} with statistical and systematic uncertainties below 2% in most of the $\left(x, Q^{2}\right)$ region covered.

- Strong scaling violations for $x<0.02$
- Measured $x-Q^{2}$ behaviour can be described by the DGLAP equations over the whole kinematic range.

The Proton Structure Functions: $x F_{3}$

- The parity violating part of Z-exchange $\left(x F_{3}\right)$ in NC DIS makes a negative contribution to the $e^{+} p$ and a positive contribution to the $e^{-} p$ cross section.
- Can be measured by subtracting $e^{+} p$ from $e^{-} p$ cross section.
- Both cross sections available at HERA.
- SM expectation describes data well.

Comparison of Data and SM Predictions for NC DIS

x and Q^{2} distributions show good agreement with the SM expectations at low values of x and Q^{2}, but a small excess of events is seen at the high ends of both distributions.

Comparison of Data and SM Predictions for DIS

- Experimental and theoretical uncertainties:
- Luminosity measurement: precision and calibration of the detector, effects from beam satellite bunches $\rightarrow 2.3 \%$.
- Detector simulation: uncertainties in the overall calorimeter energy scale and in the simulation of the CAL and CTD response to positrons $\rightarrow 4.4 \%$.
- Electroweak parameters: Relevant EW parameters have been measured to high accuracy and contribute a small uncertainty in the predicted cross section over the HERA kinematic range $\rightarrow 0.25 \%$.
- Radiative corrections: corrections due to initial state radiation convoluted with the experimental resolution produce uncertainties $\rightarrow<2 \%$
- Structure functions: uncertainties in the fits to obtain the pSTF parametrisation"
* experimental uncertainties $\rightarrow \pm 6.2 \%$
* Uncertainty of the quark-gluon coupling α_{S} used in the evolution to higher Q^{2} $\rightarrow 1.9 \%$
* total $\pm 6.5 \%$
- Total systematic uncertainty $\rightarrow \pm 8.4 \%$

Charged Current DIS

- The lowest order $E W$ cross section for the reaction $e^{+} p \rightarrow \overline{\nu_{e}} X$ can be written as:

$$
\frac{\mathrm{d}^{2} \sigma^{\mathrm{CC}}\left(e^{+} p\right)}{\mathrm{d} x \mathrm{~d} Q^{2}}=\frac{G_{F}^{2}}{4 \pi x}\left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2}\left\{Y_{+} F_{2}^{\mathrm{CC}}\left(x, Q^{2}\right)-Y_{-} x F_{3}^{\mathrm{CC}}\left(x, Q^{2}\right)-y^{2} F_{L}^{\mathrm{CC}}\left(x, Q^{2}\right)\right\}
$$

with G_{F} the fermi constant and M_{W} the W mass.

- At LO QCD the structure functions F_{2}^{CC} and $x F_{3}^{\mathrm{CC}}$ measure sums and differences of quark and antiquark parton momentum distributions.
- For longitudinally unpolarised beams:

$$
\begin{gathered}
F_{2}^{\mathrm{CC}}=x\left[d\left(x, Q^{2}\right)+s\left(x, Q^{2}\right)+\bar{u}\left(x, Q^{2}\right)+\bar{c}\left(x, Q^{2}\right)\right] \\
x F_{3}^{\mathrm{CC}}=x\left[d\left(x, Q^{2}\right)+s\left(x, Q^{2}\right)-\bar{u}\left(x, Q^{2}\right)-\bar{c}\left(x, Q^{2}\right)\right]
\end{gathered}
$$

- F_{L}^{CC} is zero at LO but finite at NLO and has a negligible contribution to the cross section except at high values y (close to 1), where it can be as large as 10%.

Charged Current Deep Inelastic Scattering Event

Single-Differential Cross Sections in Inclusive CC

- SM prediction using CTEQ4D describes data well except for small excess over $S M$ for $\mathrm{d} \sigma / \mathrm{d} x$ at $x \geq 0.3$.
- The prediction using a NLO QCD fit performed to fixed target and low- Q^{2} NC DIS data, describes the data well over the whole range measured.
- The $e^{+} p$ CC DIS cross section is dominated by the d-quark contribution at high x (a larger d / u than previously assumed).
- Modification of the PDFs with an

ZEUS CC 1994-97

 additional term yields a predicted $\mathrm{d} \sigma / \mathrm{d} x$ close to the NLO QCD fit.

Double-Differential Cross Sections in Inclusive CC

$$
\tilde{\sigma}=\left[\frac{G_{F}^{2}}{2 \pi x}\left(\frac{M_{W}^{2}}{M_{W}^{2}+Q^{2}}\right)^{2}\right]^{-1} \frac{\mathrm{~d}^{2} \sigma^{\mathrm{CC}}\left(e^{+} p\right)}{\mathrm{d} x \mathrm{~d} Q^{2}}
$$

- CTEQ4D describes the data well, though there is a slight excess at the highest x value.
- The predictions from the NLO QCD fit at high x are higher than those from CTEQ4D.
- At LO QCD, $\tilde{\sigma}$ depends on the quark momentum distributions as:

$$
\tilde{\sigma}=x\left[\bar{u}+\bar{c}+\left(1-y^{2}\right)(d+s)\right]
$$

- For fixed $Q^{2}, \tilde{\sigma}$ at low x is mainly sensitive to the antiquark combination $(\bar{u}+\bar{c})$, while at high x it is dominated by the quark combination $(d+s)$
- Both q and \bar{q} combinations are required to obtain a good description of the data.

Comparison of NC and CC Cross Sections

- At low Q^{2} the CC cross section is much smaller than the NC cross section due to the relative strength of the weak force compared to the electromagnetic force:

$$
\sigma^{\mathrm{NC}} \propto \frac{1}{Q^{4}}, \quad \sigma^{\mathrm{CC}} \propto \frac{1}{\left(Q^{2}+M_{W}^{2}\right)^{2}}
$$

- The CC cross section decreases with Q^{2} less rapidly than that for NC scattering, reflecting the behaviour of the W propagator as contrasted to the photon propagator which dominates NC scattering.
- At $Q^{2} \sim M_{W}^{2}, M_{Z}^{2}$, the $C C$ and $N C$ cross sections become comparable (approaching electroweak unification!).
- At very high Q^{2}, the rapid fall of both $C C$ and $N C$ cross sections with Q^{2} is due to the effects of the W and Z propagators, the decrease of the parton densitities with increasing x and for $C C$, the $(1-y)^{2}$
 term in the cross sections.

Electroweak Analysis

- The absolute magnitude of the CC cross section is determined by G_{F} and the PDFs
- The Q^{2} dependence of the $C C$ cross section includes the propagator $\left[M_{W}^{2} /\left(M_{W}^{2}+Q^{2}\right)^{2}\right]$
- a χ^{2} fit to the measured differential cross section $\mathrm{d} \sigma / \mathrm{d} Q^{2}$ has been performed with G_{F} and M_{W} as free parameters.
- The results of the fit are:

$$
G_{F}=1.171 \pm 0.034(\text { Sta. })_{-0.032}^{+0.026}(\text { Sys. })_{-0.015}^{+0.016}(\mathrm{PDF}) \times 10^{-5} \mathrm{GeV}^{-2}
$$

and $M_{W}=80.8_{-4.5}^{+4.9}(\text { Sta. })_{-4.3}^{+5.0}(\text { Sys. })_{-1.3}^{+1.4}(\mathrm{PDF}) \mathrm{GeV}$

- Value of G_{F} obtained is in good agreement with the value of $G_{F}=(1.16639 \pm 0.00001) \times 10^{-5} \mathrm{GeV}^{-2}$ obtained from muon decay \rightarrow universality of the $C C$ interaction.
- The value of M_{W} obtained agrees with the value of $M_{W}=80.419 \pm 0.056 \mathrm{GeV}$ from fits to measurements of W production at TeVatron $(p \bar{p})$ and LEP $\left(e^{+} e^{-}\right) \rightarrow$ important experimental consistency check of the SM.

Example of a Search for New Physics at HERA: Single Top Production via FCNC

- Single Top Production (STP) via FCNC as a Standard Model Process:
- Not a tree level SM process.
- Small σ (GIM mechanism): $\left(\sigma<1 \mathrm{fb}\right.$ HERA, $\sigma \approx 10^{-9} \mathrm{fb}$ LEP $)$
- Single Top Production via Anomalous FCNC:
$-\Delta \mathcal{L}_{\mathrm{eff}}=e e_{t} \bar{t} \frac{i \sigma_{\mu \mu} q^{\nu}}{\Lambda} \kappa_{t q \gamma} q A^{\mu}+\frac{g}{2 \cos \theta_{\mathrm{W}}} \bar{t} \gamma_{\mu} v_{t q Z} q Z^{\mu}+$ h.c.
- Events at LEP or HERA attributed to STP must be from anomalous couplings.
- Would unambiguously signal new physics.

FCNC Search at the Tevatron

- CDF searched for $t \rightarrow q \gamma$ and $t \rightarrow q Z$ with $\mathcal{L}=110 \mathrm{pb}^{-1}$.
- From SM expect 10^{-10} branching fraction.
- use $t \bar{t}$ events, one $t \rightarrow b W$.
- $t q \gamma$
- Look for γj combination with $140<M<210 \mathrm{GeV}+t \rightarrow b W$ topologies.
- no b tagged jet in γj combination.
- main background $W+\gamma+2$ or more jet events, Estimated using $W+\gamma$ event rate.
- Branching fraction limit: $3.2 \% \rightarrow k_{\gamma}^{2}<0.176$
- $t q Z$
- One t quark goes to 3 jets other $t \rightarrow Z q \rightarrow l^{+} l^{-} q$
- Require opposite charge leptons $75<M_{l l}<105$
- Branching fraction limit: $33 \% \rightarrow k_{Z}^{2}<0.533$

Searches at HERA I - I

- Signature of Single Top Production:
- Isolated high p_{T} lepton in events with large missing transverse momentum)
- Or 3 jets with $M_{j j} \approx M_{W}, M_{3 j} \approx M_{\mathrm{top}}$
- In leptonic channels main backgrounds are 2γ processes (μ), NC DIS and Single W Production.
- In hadronic channel, main background is QCD.
- Searches have been performed in both hadronic and leptonic channels, $\mathcal{L} \approx 120 p^{-1}$.

Isolated High P_{T} lepton event from H1

$$
e^{+} p \rightarrow \mu^{+} X
$$

Event MUON-2

$$
P_{T}^{\mu}=28 \mathrm{GeV}, P_{T}^{X}=67 \mathrm{GeV}, P_{T}^{\text {miss }}=43 \mathrm{GeV}
$$

Searches at HERA I - II: H1 Isolated Leptons

- Main excess is at high hadronic p_{T} - from a Heavy particle decay?.

Leptonic channel	Electron	Muon
p_{T}^{X} range	channel	ch
(GeV)	obs./expected (W)	obs./expected (W)
$p_{T}^{\mathrm{X}}<12$	5/6.40 ± 0.79 (70\%)	-
$12<p_{T}^{\mathrm{X}}<25$	$1 / 1.96 \pm 0.27(74 \%)$	$2 / 1.11 \pm 0.19(85 \%)$
$25<p_{T}^{X}<40$	10.95 $\pm 0.14(86 \%)$	3/0.89 $\pm 0.14(87 \%)$
$p_{T}^{\mathrm{X}}>40$	$3 / 0.54 \pm 0.11(83 \%)$	$30.55 \pm 0.12(93 \%)$

Searches at HERA I - III: H1 Single Top

Top mass is reconstructed from invariant mass of $l \nu j$ combinations.

- Final Selection
- Isolated l^{+}.
$-p_{T}^{X}>25(35) \mathrm{GeV}$.
$-M_{T}^{l \nu}>10 \mathrm{GeV}$
- Results
$-3 \mathrm{e}, 2 \mu$ events compatible with STP.
- expect 1.77 ± 0.46 from W production.

H1 Preliminary

Searches at HERA I - IV: ZEUS Isolated Leptons + Single Top

- Kinematic distributions compatible with SM ,no excess over SM observed

	e Channel Obs./Exp.	μ Channel Obs./Exp.
preselection	$24 / 20.6_{-4.6}^{+1.7}$	$12 / 11.9_{-0.7}^{+0.6}$
$p_{T}^{\text {had }}>25 \mathrm{GeV}$	$2 / 2.90_{-0.32}^{+0.59}$	$5 / 2.75_{-0.21}^{+0.21}$
$p_{T}^{\text {had }}>40 \mathrm{GeV}$	$0 / 0.94_{-0.10}^{+0.11}$	$0 / 0.95_{-0.10}^{+0.14}$

Searches at HERA I - V: Hadronic Channel

- Search for $e u \rightarrow e t \rightarrow e b W \rightarrow e b q q$.
- look for $M_{j j} \approx M_{W}$, make 3j Mass spectrum.
- After final cuts:

	H1(94-00)
Data	14
SM	19.6 ± 7.8
	ZEUS(95-00)
Data	14
SM	$17.6_{-1.2}^{+1.8}$

- No excess in either experiment.

Searches at HERA I - VI: $W \rightarrow$ Jets

Searches at HERA I - VII: $W \rightarrow e \nu_{e}$ ZEUS

- Isolated high P_{T} leptons in events with large missing P_{T}.
- 5 events observed in Data
- 3.5 events expected from SM backgrounds.
- 3.2 events expected from
- ZEUS 99-00 (Prel) limit:

$$
\sigma\left(e^{+} p \rightarrow e^{+} W X<2.8 \mathrm{pb}\right)
$$

- Still cannot eliminate possibility of anomolous W production.

Searches at HERA I: Summary

- Searches for Single Top Production performed by H1, ZEUS.
- In Leptonic channel H1 sees an excess of isolated lepton events compatible with STP:
- H1 : 5 seen, expect 1.8.
- ZEUS: 0 seen, expect 1.0.
- No excess in hadronic channel.
- ZEUS sets strongest limit on photon coupling (0.2).
- ZEUS latest results add sensitivity to $v_{t u Z}$
- No sensitivity at HERA to $t c Z / \gamma$ couplings.
- Waiting for HERA II:
- 10x more luminosity.

ZEUS

- Improved detectors.

Lecture II : Summary

- HERA offers the chance to study DIS in kinematic regions previously unattainable.
- A rich variety of physics is available for study.
- The structure of the proton is understandable in terms of the independent structure functions F_{2}, F_{3}, F_{L}.
- Electroweak physics can also be studied with high precision.
- HERA also offers the chance to search for physics beyond the standard model, in a manner competitive with LEP, and TeVatron.
- One example of new physics in which HERA is particulary capable of excluding or confirming are FCNC by searching for single top Production.

