HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

QCD Physics - Lecture 2

James Ferrando

Department of Physics and Astronomy University of Glasgow

 $31^{\rm st}$ January 2007

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

	HERA, ZEUS, H1	
	DIS	
Outline	Proton SFs	
	CC DIS	
	PDFs	

▲□→ ▲圖→ ▲園→ ▲園→

The HERA Facility

HERA, ZEUS, H1

Proton SFs

CC DIS

PDFs

HERA ZEUS & H1 HERA Physics

- HERA is the only *ep* collider in existence
- Collides 920 GeV p and 27.5 GeV e^\pm at H1 & ZEUS
- \sqrt{s} order of magnitude more than past DIS experiments
- Allows probing of very high Q^2 and low x regions of DIS
- HERMES -fixed target exp. studying nucleon spin structure

ZEUS & H1

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

HERA ZEUS & H1 HERA Physics

- Taking data since 1992
- ZEUS optimised for precision measurements of hadronic final state
- H1 optimised for precision measurements of the scattered lepton
- HERA experiments have published on a wide variety of topics
- 2003-2007 is HERA II running with luminosity upgrade + polarised leptons

<ロ> (四) (四) (三) (三)

ZEUS (HERA) 🛞

Software :SDRC-IDEAS level VII Finformal by : Canton Ratmann Status: Oktober 1933

HERA Physics

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

HERA ZEUS & H1 HERA Physics

A rich variety of physics topics is available for Study at HERA:

High Q^2	QCD/Hadronic Final State
 Structure of Proton 	Photon structure.
EW physics: $\sigma_{ m NC,CC}$ DIS	 Jet production.
Rare Standard Model processes	 Particle production.
Physics beyond the SM	• Measurements of $\alpha_{\rm S}$.
Heavy Flavour	Diffractive/Low x
 Production of <i>c</i>, <i>b</i> quarks Hadronisation of heavy quarks <i>F</i>₂^{cc̄}, <i>F</i>₂^{bb̄} 	 Study of events with a large rapidity gap. Vector Meson production.
	()自

< 🗗 🕨

→ E → < E →</p>

Deep Inelastic Scattering

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

- DIS of leptons on nucleons has been an important tool for understanding nucleon structure and many elements of the SM
- At HERA DIS processes are studied at $\sqrt{s}\approx 320~{\rm GeV}$ and $Q^2>M_W^2, M_Z^2$
- Unique tests of the SM and it's extensions are possible in this regime
- \blacksquare Neutral and charged current interactions up to $\alpha\alpha_{\rm S}$:

NC DIS Event

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

James Ferrando

QCD Physics - Lecture 2

Calculating $\sigma_{\rm DIS}$ I

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

 $\mathcal{M} = i \frac{ee'}{q^2} [\bar{u}(k', \sigma') \gamma_{\lambda} u(k, \sigma)] [\bar{u}(p', \rho') \lambda^{\mu} u(p, \rho)]$

For unpolarised σ , the initial spin states must be averaged over.

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{e^2 e'^2}{q^4} L_e^{\lambda \nu} L_{\lambda \nu}^{\mu}$$
Where: $L_e^{\lambda \nu} = 2(k'^{\lambda} k^{\nu} + k'^{\nu} k^{\lambda} - (k'.k)g^{\lambda \nu})$

Calculating $\sigma_{\rm DIS}$ II

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

Contract the leptonic tensors

$$\begin{split} L_e^{\lambda\nu} &= 2(k'^{\lambda}k^{\nu} + k'^{\nu}k^{\lambda} - (k'.k)g^{\lambda\nu}) \\ L_{\lambda\nu}^{\mu} &= 2(p'_{\lambda}p_{\nu} + p'^{\nu}p_{\lambda} - (p'.p)g_{\lambda\nu}) \\ L_e.L^{\mu} &= 8[(k'.p')(k.p) + (k'.p)(k'.k)] \end{split}$$

Rewrite in terms of the Mandelstam variables

$$\begin{split} s &= (k + p)^2 = (k' + p')^2, t = (k - k')^2 = (p' - p)^2, u = (k - p')^2 = (k' - p)^2 \\ L_e. L^\mu &= 2(s^2 + u^2). \end{split}$$

substitute $y = \frac{(p.q)}{(p.k)} = \frac{u}{s} + 1$

$$\frac{1}{4} \sum_{\text{spins}} |\mathcal{M}|^2 = \frac{e^2 e'^2}{Q^4} 2s^2 [1 + (1 - y)^2]$$

Insert phase space and flux factor

$$rac{\mathrm{d}\sigma}{\mathrm{d}y} = rac{e^2 e'^2}{8\pi Q^4} [1 + (1 - y)^2] s
ightarrow rac{\mathrm{d}\sigma}{\mathrm{d}y} = rac{2\pi lpha^2}{Q^4} [1 + (1 - y)^2] s$$

One isotropic contribution from same handed spin directions

Calculating $\sigma_{\rm DIS}$ III

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

Calculation for $e\mu$ scattering applies to eq scattering. However we change the variables: the q contains a fraction x' of the proton momentum. meaning $p \to x'p$ gives $s \to x's$ so that:

$$rac{\mathrm{d}\sigma}{\mathrm{d}y} = rac{2\pilpha^2}{Q^4} [1+(1-y)^2] x' s e_i^2$$

where e_i is the charge of the quark In the QPM we can interpret *lh* scattering as the incoherent sum of *l*-parton scattering. We write:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{y}} = \frac{2\pi\alpha^2}{Q^4} [1 + (1 - y)^2] s \sum_i x' e_i^2 q_i(x)$$

 $(q(x_i)$: probability quark q_i carries a fraction) x of the hadron momentum) The distribution $xq_i(x)$ is a parton distribution function (PDF)

Rewrite the double differential cross section using $Q^2 = sxy$ $\frac{d\sigma}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} [1 + (1 - y)^2] \sum_i x' e_i^2 q_i(x)$ Calculating σ_{DIS} IV

DIS Basics NC DIS Cross Section QPM Predictions

Compare QPM result to general formula for *lh* scattering.

Proton SFs CC DIS

DIS

PDFs

HERA, ZEUS, H1

 $\mathrm{d}\sigma\sim\mathrm{L}_{\mu\nu}^{\mathrm{e}}W^{\mu\nu}$

where $W^{\mu\nu}$ is the hadronic tensor analogous to the lepton tensor.

General form for $W^{\mu\nu}$

$$W^{\mu\nu} = -W_1 g^{\mu\nu} + \frac{W_2}{m^2} p^{\mu} p^{\nu} - i \epsilon^{\mu\nu\alpha\beta} p_{\alpha} q_{\beta} \frac{W_3}{2m^2} + \frac{W_4}{m^2} q^{\mu} q^{\nu} + \frac{W_5}{m^2} (p^{\mu} q^{\nu} + p^{\nu} q^{\mu}) + i (p^{\mu} q^{\nu} - p^{\nu} q^{\mu}) \frac{W_6}{2m^2}$$

 $\epsilon^{\mu\nu\alpha\beta}$ is the totally antisymmetric rank 2 tensor which is +1(-1) when $\mu\nu\alpha\beta$ is an even (odd) permutation of 0123 and 0 otherwise. W_6 term disappears for unpolarised scattering since $L^{\mu\nu}$ is symmetric. For γ scattering the parity violating W_3 term is also discarded.

Calculating $\sigma_{ m DIS}$ V

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

$$W^{\mu
u} = -W_1 g^{\mu
u} + rac{W_2}{m^2} p^\mu p^
u + rac{W_4}{m^2} q^\mu q^
u + rac{W_5}{m^2} (p^\mu q^
u + p^
u q^\mu)$$

Simplify $W^{\mu\nu}$ using conservation of current at the hadronic vertex

$$q_\mu W^{\mu
u} = q_
u W^{\mu
u} = 0$$

giving:

$$W_5 = -\frac{p \cdot q}{q^2} W_2$$

and:

$$W_4 = \left(\frac{p.q}{q^2}\right)^2 W_2 + \frac{M^2}{q^2} W_1$$

So that:

$$W^{\mu
u} = W_1 \left(-g^{\mu
u} + rac{q^\mu q^
u}{q^2}
ight) + W_2 rac{1}{M^2} \left(p^\mu - rac{p.q}{q^2} q^\mu
ight) \left(p^
u - rac{p.q}{q^2} q^
u
ight)$$

イロト イヨト イヨト イヨト

DIS Basics NC DIS Cross Section QPM Predictions

Following the calculation with this hadronic tensor (see e;g; Halzen and Martin) gives:

HERA, ZEUS, H1

DIS

Proton SFs

CC DIS PDFs

$$\frac{\mathrm{d}^2\sigma^{e^{\pm}p}}{\mathrm{d}x\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{xQ^4} \left[y^2 x \mathcal{F}_1(x,Q^2) + (1-y)\mathcal{F}_2(x,Q^2) \right]$$

where

$$F_1(x, Q^2) = MW_1(\nu, Q^2), \ \nu = (p.q)$$

and
 $F_2(x, Q^2) = \nu W_2(\nu, Q^2) = \frac{p.q}{M} W_2(x, Q^2).$
define:

$$F_L = F_2 - 2xF_1$$

then:

$$\frac{\mathrm{d}^2 \sigma^{\mathrm{e}^{\pm} p}}{\mathrm{d} x \mathrm{d} Q^2} = \frac{2 \pi \alpha^2}{x Q^4} \left[[1 + (1 - y)^2] F_2(x, Q^2) - y^2 F_L(x, Q^2) \right]$$

イロト イヨト イヨト イヨト

QPM Predictions

This

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

DIS Basics NC DIS Cross Section QPM Predictions

Compare our general result to the quark parton model result:

$$\frac{d^2 \sigma^{e^{\pm p}}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left[[1 + (1 - y)^2] F_2(x, Q^2) - y^2 F_L(x, Q^2) \right]$$
$$\frac{d\sigma}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [1 + (1 - y)^2] \sum_i x' e_i^2 q_i(x)$$
implies that $F_2(x, Q^2) = \sum_i x' e_i^2 q_i(x)$ SCALING!

Another prediction is the Callan-Gross relationship $F_L = 0$:

$$2xF_1(x)=F_2(x)$$

This is a consequence of the partons having spin 1/2. Full cross section includes Parity Violating term, neglected in this calculation.

・ロト ・回ト ・ヨト

Proton Structure	HERA, ZEUS, H1 DIS	Definitions Kinematic Range of Measurements F2
Functions	CC DIS PDFs	<i>xF</i> 3 Measurement Uncertainties

Double differential cross section for inclusive *ep* scattering:

$$\frac{\mathrm{d}^{2}\sigma^{e^{\pm}p}}{\mathrm{d}x\mathrm{d}Q^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left[\left[Y_{+}F_{2}(x,Q^{2}) \mp Y_{-}xF_{3}(x,Q^{2}) - y^{2}F_{L}(x,Q^{2}) \right] \left(1 + \delta_{r}(x,Q^{2}) \right) \right]$$

$$Y_{\pm}=1\pm(1-y)^2$$

 F_L is the Longitudinal Structure Function.

 xF_3 is the parity violating term.

 δ_r is the electroweak radiative correction.

Structure function F_2 contains contributions from virtual photon and Z_0 exchange:

$$F_2 = F_2^{ ext{em}} + rac{Q^2}{(Q^2 + M_Z^2)}F_2^{ ext{int}} + rac{Q^4}{(Q^2 + M_Z^2)}F_2^{ ext{wk}} = F_2^{ ext{em}}(1 + \Delta F_2)$$

 F_2^{em} is the contribution from the photon. F_2^{wk} is the contribution from the Z_0 . F_2^{int} is the interference term.

Kinematic Range of Measurements

ERA, ZEUS, H1
DIS
Proton SFs
CC DIS
PDFs

Definitions Kinematic Range of Measurements F_2 xF_3 Measurement Uncertainties

- HERA: ZEUS, NC cross sections: x > 10⁻⁶ and
 - $x > 10^{-5}$ and $0.05 < Q^2 < 10^5 \text{ GeV}^2$

Fixed Target

- μ-induced F₂ from BCDMS, NMC, E665.
- Deuterium-target data from NMC and E665.
- NMC data on F_D^2/F_2^p

イロト イヨト イヨト イヨト

- CCFR xF₃ data.
- $x > 6.10^{-4}$ and $0.2 < Q^2 < 200 \text{ GeV}^2$

James Ferrando

QCD Physics - Lecture 2

Measurement of F_2 for $2.7 < Q^2 < 6 \times 10^5 \text{ GeV}^2$ has statistical & systematic uncertainties below 2% in most of the (x, Q^2) region

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs DIS F_2 κ_{F_3} κ_{F_3} CC DIS PDFs Uncertainties

Measurement of F_2 for 2.7 $< Q^2 < 30000 \text{GeV}^2$ and 6×10^5 .

equations over the whole kinematic range

イロト イヨト イヨト イヨト

æ

xF₃

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements F_2 xF_3 Measurement Uncertainties

- Parity violating part of Z-exchange (xF_3) in NC DIS makes a -ve contribution to $\sigma(e^+p)$ and a +ve contribution to $\sigma(e^-p)$
- Can be measured by subtracting e⁺p from e⁻p cross section
- SM expectation describes data well.

イロト イヨト イヨト イヨト

Definitions Kinematic Range of Measurements Measurement Uncertainties

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

How do we measure the structure functions?

• Define a cross section $\left(\frac{d\sigma_{\text{pred}}}{dQ^2dx}\right)$ dependent on $F_2(x, Q^2)$

CC DIS

PDFs

- Measure $\frac{d\sigma_{\text{pred}}}{dQ^2dx}$
- Extract $F_2(x, Q^2)$ using measurements and predictions

Let's follow this process for inclusive NC DIS measurement...

Selecting NC DIS

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements $F_2 = xF_3$ Measurement Uncertainties

Signature of Neutral Current Deep Inelastic Scattering at HERA

A high energy scattered beam electron balanced in transverse momentum (P_T) by the hadronic system

There are 2 large backgrounds to overcome:

Beam-gas interactions - can be rejected using timing

• fake electrons in photoproduction (γp) events γp is removed by cutting on $\delta = \sum_{i} (E_i - E_i \cos \theta) = \sum_{i} (E - p_z)_i$ In γp the electron escapes undetected. In events where the electron is fully reconstructed δ peaks close to $2E_{\text{beam}}^e$. Once DIS sample selected corrections are applied for Born level cross section

イロト イヨト イヨト イヨト

Corrections

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements F_2 xF_3 **Measurement** Uncertainties

Two types of radiative corrections:

- Virtual corrections
- Infrared part of real photon emission

Necessary because it shifts the true Q^2 and δ from the true value, effect is less than 10% at HERA

- Acceptance corrections
 - Factor to get from binned number of events to cross section

A D > A D >

nge of Measurements

- DIS MC events are generated
- Events are passed through detector simulation
- It is checked that MC decribes key variables
- Bins of x, Q^2 are chosen appropriate to detector resolution
- In each bin 3 indicators are used to establish suitability: Acceptance, Purity, Efficiency

Control Plots

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements $F_2 = xF_3$ **Measurement** Uncertainties

- Description is generally satisfactory
- Especially good at High Q^2

Eur. Phys. Jour. C21 (2001) 3, 443-471

< 🗗 >

물 🖌 🛪 물 🕨

Purity, Efficiency & Acceptance

ERA, ZEUS, H1
DIS
Proton SFs
CC DIS
PDFs

Definitions Kinematic Range of Measurements $F_2 \ xF_3$ Measurement Uncertainties

・ロト ・回ト ・ヨト

Acceptance

The ratio of the number of events measured in a (N_{MC}) to the number of events generated in a bin (N_{True}) .

Purity

The ratio of the number of events measured & generated in a bin to the number of events measured in a bin.

Efficiency

The ratio of the number of events measured & generated in a bin to the number of events generated in a bin.

$$A = E/P$$

Bin-by-Bin Unfolding

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements $F_2 = xF_3$ **Measurement** Uncertainties

Cross section measurement

イロト イヨト イヨト イヨト

 $\sigma \rightarrow F_2 \qquad \begin{array}{c} {}_{\text{HERA, ZEUS, H1}} \\ {}_{\text{DIS}} \\ {}_{\text{Proton SFs}} \\ {}_{\text{CC DIS}} \\ {}_{\text{PDFs}} \\ {}_{\text{Measurement}} \\ {}_{\text{Uncertainties}} \\ \end{array} \qquad \begin{array}{c} {}_{\text{Definitions}} \\ {}_{\text{Kinematic Range of Measurements}} \\ \\ {}_{\text{Kinematic Range of Measurements}} \\ {}_{\text{Kinematic Range of Measurements}} \\ \\ \\ {}_{\text{Kinematic Range of Measurements}$

$$F_2^{\text{em}} = \frac{Q^4 x Y_+}{2\pi \alpha^2} \frac{\mathrm{d}^2 \sigma}{\mathrm{d} x \mathrm{d} Q^2} [1 + \delta_{RC} + \delta_{F_L} + \delta_Z]$$

• $\delta_{\text{RC}}, \delta_{F_L}$ and δ_Z are corrections for radiative effects, the longitudinal structure function and Z^0 exchange.

Usually calculation is iterative using

$$F^{i+1}(x,Q^2) = rac{N_{ ext{data}} - N_{ ext{bkgnd}}}{N_{ ext{MC}}(x,Q^2)}F^i(x,Q^2)$$

イロト イヨト イヨト イヨト

Uncertainties HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Definitions Kinematic Range of Measurements F2 xF3 Measurement Uncertainties

- Experimental and theoretical uncertainties:
 - Luminosity measurement: precision and calibration of the detector, effects from beam satellite bunches $\rightarrow 2.3\%$
 - Detector simulation: uncertainties in CAL energy scale and in simulation of the CAL and CTD response to $e^\pm \to 4.4\%$
 - Electroweak parameters: Relevant parameters have been measured to high accuracy & contribute small uncertainty in predicted σ over the HERA kinematic range $\rightarrow 0.25\%$
 - Radiative corrections: corrections due to ISR convoluted with experimental resolution produce uncertainties →< 2%
 - Structure functions:
 - experimental uncertainties $\rightarrow \pm 6.2\%$
 - Uncertainty of the quark-gluon coupling α_S used in the evolution to higher $Q^2 \rightarrow 1.9\%$
 - total <u>±6.5%</u>
- Total systematic uncertainty $\rightarrow \pm 8.4\%$

<ロ> (四) (四) (三) (三)

Charged Current DIS

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

• Lowest order EW cross section for the reaction $e^+p \rightarrow \bar{\nu_e}X$:

$$\frac{\mathrm{d}^2 \sigma^{\mathrm{CC}}(e^+ p)}{\mathrm{d} x \mathrm{d} Q^2} = \frac{G_F^2}{4\pi x} \left(\frac{M_W^2}{M_W^2 + Q^2} \right)^2 \{ Y_+ F_2^{\mathrm{CC}}(x, Q^2) - Y_- x F_3^{\mathrm{CC}}(x, Q^2) - y^2 F_L^{\mathrm{CC}}(x, Q^2) \}$$

with G_F the fermi constant and M_W the W mass

- At LO QCD the structure functions F₂^{CC} and xF₃^{CC} measure sums and differences of quark and antiquark parton momentum distributions
- For longitudinally unpolarised beams:

$$\begin{split} F_2^{\rm CC} &= x[d(x,Q^2) + s(x,Q^2) + \bar{u}(x,Q^2) + \bar{c}(x,Q^2)] \\ xF_3^{\rm CC} &= x[d(x,Q^2) + s(x,Q^2) - \bar{u}(x,Q^2) - \bar{c}(x,Q^2)] \end{split}$$

F_L^{CC} is zero at LO but finite at NLO and has a negligible contribution to the cross section except at high values of y (close to 1), where it can be as large as 10%

Charged Current Event

DIS Proton SFs
Proton SFs
PDFs

James Ferrando

PDF Extraction I

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

- pQCD only predicts the Q² evolution of the PDFs, not the x dependence
- Ideally find analytic parametrisations of the PDFs which are consistent with Q² dependence predicted by QCD.
- Most common method: perform direct numerical integration of the DGLAP equations at Next-to-leading-order (NLO)

PDF Extraction II

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

Simple recipe for extracting PDFs:

- Assume different analytic shapes for PDFs (valence, sea, gluon) at some starting scale $Q^2 = Q_0^2$
 - $\blacksquare \ Q_0^2$ is arbitary, but must be large enough for $\alpha_{\mathrm{s}(Q_0^2)}$ to be small
- Use the DGLAP equations to evolve the PDFs up to a different Q² value and use to predict structure functions
- Fit to data

Necessary parameters are those needed to specify the analytic shapes of the PDFs, Λ_{QCD} and $\alpha(M_Z^2)$

 ${\scriptstyle \bullet}$ Can use these fits to determine $\alpha_{\rm S}$ as well as the PDFs

PDF Extraction III

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs Non-DIS information

A typical choice of PDFs to fit are:

$$u_v, d_v, S, g, \bar{d} - \bar{u}$$

Usual Form of PDFs

$$\begin{aligned} xu_{v} &= A_{u}x^{\lambda_{u}}(1-x)^{\eta_{u}}P(x,u) \\ xd_{v} &= A_{d}x^{\lambda_{d}}(1-x)^{\eta_{d}}P(x,d) \\ xS &= A_{S}x^{\lambda_{S}}(1-x)^{\eta_{S}}P(x,S) \\ xg &= A_{g}x^{\lambda_{g}}(1-x)^{\eta_{g}}P(x,g) \end{aligned}$$

P(x,i) are polynomials in x or \sqrt{x} Not all normalisations A_i are free parameters: $A_u, A_d \& A_g$ are constrained by different sum rules

(4)

The Sea Quark Distribution

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

Flavour composition of the sea

- Heavy quarks require special treatment; assume either
 - entirely generated by gluon distribution via $\gamma^*g \rightarrow q\bar{q}(Q^2 \sim m_{c,b}^2)$
 - Heavy quark distribution only above threshold $Q^2 \gg m_{c,b}^2$
- Strange quarks suppressed wrt to *u* & *d* (larger mass)

$$\bar{s} = rac{(\bar{u}+\bar{d})}{4}$$

- Historically assume *u*, *d* content of sea is symmetric
- no special reason why this should be true
- in fact it seems that $\bar{d} > \bar{u}$

PDF Constraints I

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

CCFR neutrino data (xF₃)

- Valence shapes for all x with $u_V \& d_V$ contributing early
- Most reliable at medium x (worry about nuclear corrections at highest and lowest x)
- NMC data on $\frac{F_2(\mu D)}{F_2(\mu p)}$
 - gives ratio d_V/u_V at large x
 - Only dataset to do so
- F₂(*ID*) & F₂(*Ip*) from NMC, BDCMS, E665, SLAC and F₂ from CCFR
 - Singlet combination of quarks ($x\Sigma = xu_v + xd_v + xS$)
 - Sea distribution for all (x, Q^2) covered by experiments

<ロ> (四) (四) (三) (三)

PDF Constraints II

Extraction The Sea **PDF Constraints** Non-DIS information

Where do different constraints come from?

- F₂ data from the same experiments
 - Combinations of u_v and d_V at high x

HERA, ZEUS, H1

Proton SFs

CC DIS

PDFs

- Contributions weighted by $(quark charge)^2 (u_v)$ dominant for protons
- equal contribution for deuterons
- u_v better determined than d_v
- F₂ data also constrains gluon density
- CCFR dimuon data
 - Strange Quark distribution
 - directly or cia weak decay of charm quarks
- HERA data
 - Sea quark and gluon distributions

<ロ> <同> <同> < 同> < 同> < 同><</p>

Results of QCD Fits

HERA, ZEUS, H1 DIS S Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

- Results from different groups MRST & CTEQ - professional fitters and market leaders
- In these global fits other data, aside from structure function data is also used

イロト イヨト イヨト イヨト

Eur. Phys. J. C42 (2005) 1-16

HERA, ZEUS, H1 Non-DIS PDF Data I

Extraction The Sea PDF Constraints Non-DIS information

Constraints on quark distributions can also come from:

Proton SFs

CC DIS

PDFs

- Drell-Yan dilepton production: $pN \rightarrow \mu^+ \mu^- X$
 - A sensitive probe of sea guark distribution
 - dominant subprocess: $q\bar{q} \rightarrow \gamma^* \rightarrow \mu^+ \mu^-$
 - Data from E605 and more recently E772 (moderate to high x)
- Ratio of data $pn \rightarrow \mu^+ \mu^- X$ to $pp \rightarrow \mu^+ \mu^- X$
 - Give information on ration $\frac{\overline{d}}{\overline{a}}$ (NA51 & E866) experiments
- W^{\pm} production:

$$p\bar{p}
ightarrow W^{\pm}X$$

- Dominant subprocesses: $u\bar{d} \rightarrow W^+$. $d\bar{u} \rightarrow W^-$
- W^{\pm} asymmetry also gives information on d/u

<ロ> (四) (四) (三) (三)

HERA, ZEUS, H1 Non-DIS PDF Data II Proton SFs

Extraction The Sea PDF Constraints Non-DIS information

Constraints on the gluon distribution

- DIS structure function data only really constrains low-x gluon
- use prompt photon or single inclusive jet production to get high-x gluon
- Prompt Photon data: $pN \rightarrow \gamma X(0.02 < x < 0.5)$

CC DIS

PDFs

- Dominant subprocess: $gg \gamma q$ at leading order
- Data from WA70, UA6, E706, ISR, UA2, CDF
- High E_T jet production from HERA TeVatron
 - Depend on the gluon via gg, gq and $g\bar{q}$ initiated processes

イロン イ団と イヨン イヨ

Summary	&
Conclusion	ns

HERA, ZEUS, H1 DIS Proton SFs CC DIS PDFs

Extraction The Sea PDF Constraints Non-DIS information

- DIS offers a precise way of measuring the structure of the proton
- The structure of the proton can be understood in terms of parton distribution functions, described by QCD
- The precision of these data will especially the high x gluon will strongly affect early LHC physics results

<ロ> (四) (四) (三) (三)