QCD Physics - Lecture 5

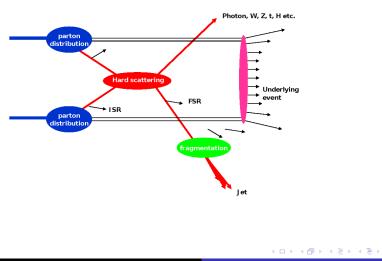
James Ferrando

Department of Physics and Astronomy University of Glasgow

 $8^{\rm th}$ February 2007

<ロ> (四) (四) (日) (日) (日)

- 1 QCD in $p\bar{p}$
- 2 Jet Production
- 3 Drell-Yan Scattering
- 4 Direct/Prompt Photons
- 5 Heavy Quark Production



イロト イヨト イヨト イヨト

QCD in $p\bar{p}$

QCD in pp Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Jet Production

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Inclusive Jets Dijet Correlations

High-Energy hadron-hadron interactions are described by the improved $\ensuremath{\mathsf{QPM}}$

The incoming hadrons provide 'broad-band' beams of partons with varying fractions of momentum

The cross section for a hard scattering process initiated by two hadrons with four-momentum P_1 and P_2 can be written as:

$$\sigma(P_1, P_2) = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu^2) f_j(x_2, \mu^2) \hat{\sigma}_{ij}(p_1, p_2, \alpha_5(\mu^2), Q^2/\mu^2)$$

momenta of partons participating in the hard interactions are $p_1 = x_1P_1$ and $p_2 = x_2P_2$. Scale is called Q, could be mass of a weak boson, heavy quark or transverse jet energy. σ_{ij} is called the short-distance cross section

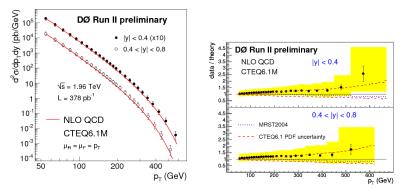
Inclusive Jets Dijet Correlations

The short distance cross section $(\hat{\sigma})$ can be calculated (at high energy) as a perturbation series in α_S . Therefore $(n + k)^{\text{th}}$ -order approximation to the short distance cross

section is given by:

$$\hat{\sigma} = \alpha_{S}^{k} \sum_{m=0}^{n} c^{(m)} \alpha_{S}^{m}$$

 $c^{(m)}$ are functions of the kinematic variables and factorisation scale Different hard processes contribute with different leading powers kIn the leading (n=0) approximation, $\hat{\sigma}$ is identical to the normal parton scattering cross section calculated as one would for QED.



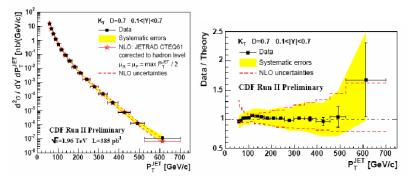
・ロト ・回ト ・ヨト

Inclusive Jet Results

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Inclusive Jets Dijet Correlations

Results reasonably described, variation from theory within PDF uncertainties


æ

< 🗗 >

Inclusive Jet Results

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

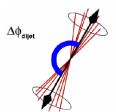
Inclusive Jets Dijet Correlations

reasonable description of data, largest theoretical uncertainty comes from gluon at high \boldsymbol{x}

Э

D0 Dijet Correlations

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

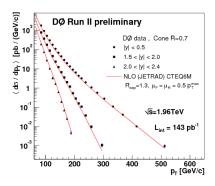

Inclusive Jets Dijet Correlations

Test of higher order QCD effects in two jet events without explicitly requiring other jets

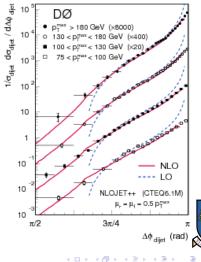
- \blacksquare additional radiation causes deviation of $\Delta\phi$ from π
- Phys. Rev. Lett 94 221801 (2005)

Data Sample:

- **150** pb⁻¹
- 2 jets $P_T > 40$ GeV, |y| < 0.5



<ロ> (四) (四) (三) (三)



Inclusive Jets Dijet Correlations

Inclusive Dijets

Dijet Correlations

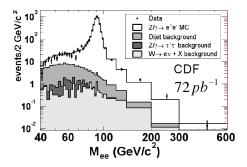
Drell-Yan Scattering I

QCD in $p\bar{p}$ Jet Production **Drell-Yan Scattering** Direct/Prompt Photons Heavy Quark Production Summary

Introduction Asymmetries Vector Bosons + Jets

Drell-Yan cross sections were the first hadron-hadron processes to be calculated from first principles.

$$\sigma_{AB} = \sum_{q} \int dx_1 dx_2 f_q(x_1) f_{\bar{q}(x_2)} \hat{\sigma}_{q\bar{q} \rightarrow l^+ l^-}$$



イロト イヨト イヨト イヨト

Drell-Yan Scattering II

QCD in $p\bar{p}$ Jet Production **Drell-Yan Scattering** Direct/Prompt Photons Heavy Quark Production Summary

Introduction Asymmetries Vector Bosons + Jets

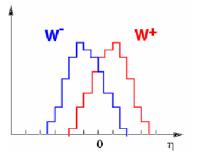
Data well predicted by MC, which uses pPDFs to predict cross section Invariant mass distribution clearly shows Z pole

< 🗗 >

Drell-Yan	
Scattering	

Introduction Asymmetries Vector Bosons + Jets

The Drell-Yan mechanism can also produce W^{\pm} e;g; $u\bar{d} \to W^+$ The nature of this process is such that it is sensitive to the quark PDFs


イロト イヨト イヨト イヨト

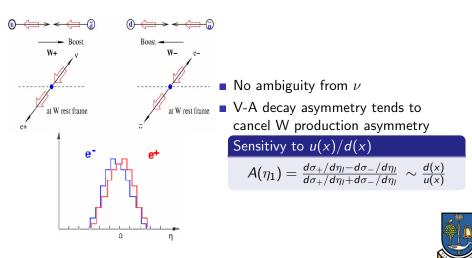
 W^\pm asymmetry

QCD in $p\bar{p}$ Jet Production **Drell-Yan Scattering** Direct/Prompt Photons Heavy Quark Production Summary

Introduction Asymmetries Vector Bosons + Jets

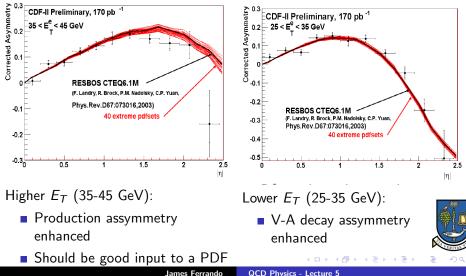
Since the $u(\bar{u})$ quark tends to contain a higher fraction of the $p(\bar{p})$ momentum W^+ (W^-) tends to move in $p(\bar{p})$ beam direction

<ロ> (四) (四) (三) (三)


W momentum determination is vulnerable to ambiguity from neutrino

Lepton Charge asymmetry

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary


Introduction Asymmetries Vector Bosons + Jets

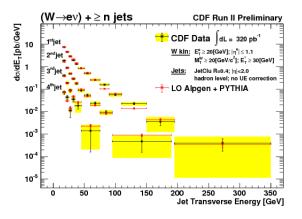
イロト イヨト イヨト イヨト

One can Divide the E_T region to increase sensitivity

Vector	Bosons
+ Jets	

Introduction Asymmetries Vector Bosons + Jets

One of the most important SM processes in high energy hadron-hadron collisons is W/Z production with accompanying hadronic jets Most new physics (inc. Higgs) can be mimicked by the production of vector bosons in association with jets - understanding of this process will allow us to estimate the background correctly.

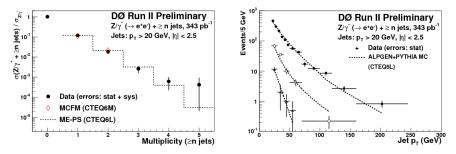


<ロ> (四) (四) (三) (三)

W + jets

QCD in $p\bar{p}$ Jet Production **Drell-Yan Scattering** Direct/Prompt Photons Heavy Quark Production Summary

Introduction Asymmetries Vector Bosons + Jets

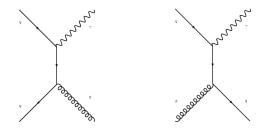


・ロト ・回ト ・ヨト

< ∃⇒

Introduction Asymmetries Vector Bosons + Jets

Reasonable agreement with the QCD calculations



< **●** →

< 注 > < 注

Prompt Photons Direct/Prompt Production Direct/Prompt Photons Heavy Quark Production Summary

Direct or prompt photon production is closely related to high E_T jet production

Different from ISR where photon goes down beamline Different from FSR where photon is close to jet Process is sensitive to gluon in proton

< 🗗 🕨

Why Study Prompt γ s?

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Introduction Cross Section at TeVatron HERA measurements

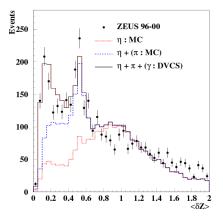
Advantages of γ s over jets:

- Energy resolution of electromagnetic calorimeters is generally better than the resolution of hadronic calorimeters
- \blacksquare System uncertainties in the γ energy scale are smaller than jet energy scales
- Photon direction & movement simpler to reconstruct than running jet algorithms

Disadvantages:

Relatively low rate ($\mathcal{O}(\alpha \alpha_{S})$ compared to ($\mathcal{O}(\alpha_{s}^{2})$) for jets)

• large
$$\pi^0 \to \gamma \gamma$$
 and $\eta \to \pi^0 \pi^0 \pi^0$


・ロト ・回ト ・ヨト

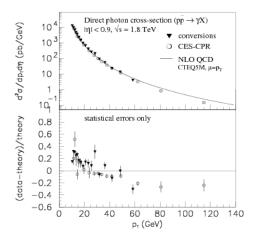
Extracting γ signals

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Introduction Cross Section at TeVatron HERA measurements

There are several handles to assess/remove η , π background

- One method is to use lateral shower width or similar cluster information in order to fit η,π,γs
- A recent method at CDF used converted photons (with e⁺e⁻ tracks in front of the calorimeter) in order to reduce η, π


< 🗗 🕨

CDF measurement

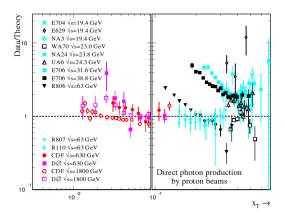
QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Introduction Cross Section at TeVatron HERA measurements

NLO QCD calculations describe data poorly

< 🗗 >

< ≣ >

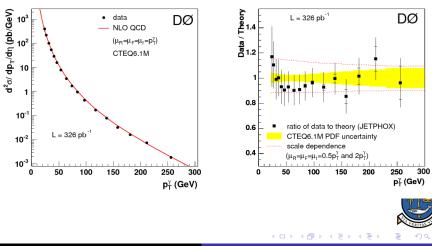

< ∃⇒

hadron-hadron measurements

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

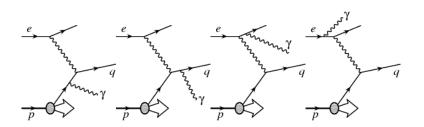
Introduction Cross Section at TeVatron HERA measurements

Comparison of measurements to theory against $x_T = 2p_T/\sqrt{s}$


イロト イヨト イヨト イヨト

hadron-hadron measurements

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

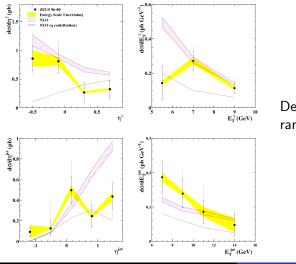

Introduction Cross Section at TeVatron HERA measurements

Prompt γ s in DIS

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Introduction Cross Section at TeVatron HERA measurements

LO contributions to prompt photon production in ep collsions



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Prompt γ s in DIS

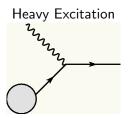
QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

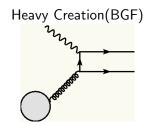
Introduction Cross Section at TeVatron HERA measurements

Description of data by NLO ranges from satisfactory to fair

<ロ> <同> <同> < 同> < 同> < 同>

James Ferrando QC


QCD Physics - Lecture 5

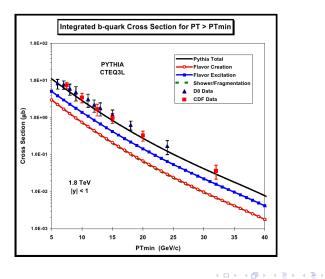

Heavy Quark Production

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

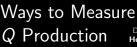
Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

"Heavy" quark means charm, bottom, top How do we produce Heavy Quarks in hadron collisions?

イロト イヨト イヨト イヨト


Have to be careful not to double count in calculation

Contributions


QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

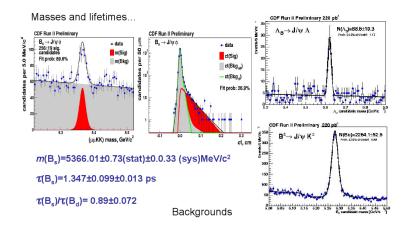
James Ferrando QC



Heavy quarks can be measured using colour singlet states i;e; B mesons

There are different approaches to measuring a particle

- Reconstruct a meson mass peak using tracks
- Use impact parameter and tag with knowledge of particle lifetime

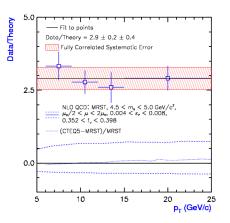


Total heavy quark production can be extracted from meson cross section using fragmentation fractions

Ways to Measure Q Production

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

 $\begin{array}{l} \mbox{Production Mechanisms}\\ \mbox{Measuring Heavy Quarks}\\ F_2^{c\bar{c}} \mbox{ and } F_2^{b\bar{b}} \end{array}$



イロン イヨン イヨン イヨン

 $\mathsf{CDF}\ B^+$

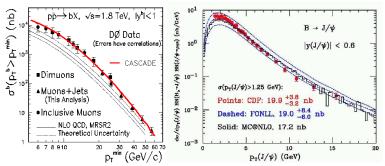
QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

 $\begin{array}{l} \mbox{Production Mechanisms}\\ \mbox{Measuring Heavy Quarks}\\ F_2^{c\bar{c}} \mbox{ and } F_2^{b\bar{b}} \end{array}$

Signal extracted from fit to mass peak Data a factor 2 over theory! Since this measurement theory has

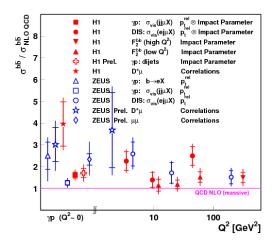
イロト イヨト イヨト イヨト

significantly improved.



 $\begin{array}{l} \textbf{Production Mechanisms} \\ \textbf{Measuring Heavy Quarks} \\ F_2^{c\bar{c}} \text{ and } F_2^{b\bar{b}} \end{array}$

Run-II



・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Beauty at HERA

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons Heavy Quark Production Summary

 $\begin{array}{l} \mbox{Production Mechanisms}\\ \mbox{Measuring Heavy Quarks}\\ F_2^{c\bar{c}} \mbox{ and } F_2^{b\bar{b}} \end{array}$

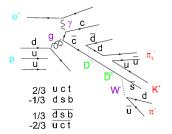
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Q	structure
fu	nctions

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

In DIS charm and beauty production comes mainly form BGF. One can measure the structure functions $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ Presented here

- ZEUS $F_2^{c\bar{c}}$ result using fully reconstructed D^* mesons
- H1 $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$ using inclusive impact parameters

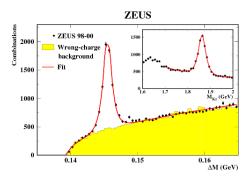


<ロ> (四) (四) (三) (三)

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

 D^*s are chosen because they have an especially clean so called 'golden' decay channel $D^*\to K\pi\pi_s$

A normal DIS selection is used to select events, followed by a mass window cut on reconstructed D^0 . The signal mass peak uses the difference between the D_0 and the $D^0 + \pi_s$


・ロト ・回ト ・ヨト

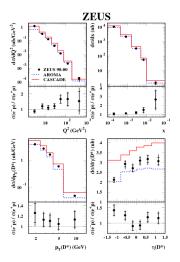
*F*₂^{*c*^{*c*}} From *D**s in DIS

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons **Heavy Quark Production** Summary

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

Signal:

background can be evaluated from so called wrong charge combinations, such as $K^+\pi^+\pi^+_s$ and $K^+\pi^-\pi^+_s$

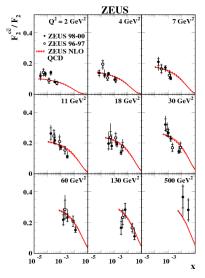


- 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2 - 4 回 2

$F_2^{c\bar{c}}$ From D^*s in DIS

QCD in $p\bar{p}$ Jet Production Drell-Yan Scattering Direct/Prompt Photons **Heavy Quark Production** Summary

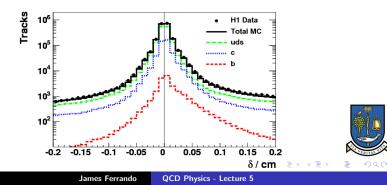
Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$


 $\sigma(D^*)$ is extrapolated to the full charm cross section using fragmentation fraction to get to D^* and branching ration for $D^* \rightarrow k\pi\pi_s$ $F_2^{c\bar{c}}$ can be extracted from this cross section in the usual way

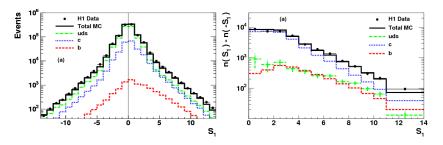
イロト イヨト イヨト イヨト

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

Charm contribution to F_2 can be as high as 30%

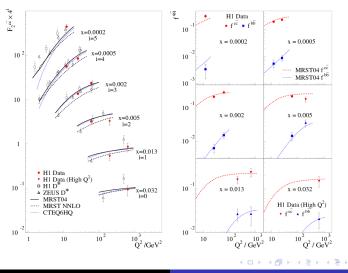

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The H1 collaboration recently published a very elegant measurement of $F_2^{c\bar{c}}$ using their vertex detector


- Start with standard DIS selection
- The signed impact parameter (δ) distribution of tracks with respect to the hadronic system (reconstructed for jets in the final state) is constructed

Production Mechanisms Measuring Heavy Quarks $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

Construct significance ($S = \delta / \sigma \delta$]) distribution


Fit to obtain fraction of c and b and use to extract $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

< ≣

 $\begin{array}{l} \mbox{Production Mechanisms} \\ \mbox{Measuring Heavy Quarks} \\ F_2^{c\bar{c}} \mbox{ and } F_2^{b\bar{b}} \end{array}$

James Ferrando QCD Phy

QCD Physics - Lecture 5

 $p\bar{p}$ offers a variety of QCD physics, often very different to e^-e^+ and ep scattering. Of course all measurements of QCD at TeVatron will help us understand better future physics at the LHC

イロト イヨト イヨト イヨト