

ol

GLASGOW

UNIN

Pixel detectors for Photon Counting

Charge integration vs photon counting

Pixel functionality for added performance

CCD system: charge integration, affected by leakage currents

Photon counting: count individual incoming photon, no leakage effects

Photon counting system - Medipix1 CERN, Freiburg, Glasgow & Pisa - 1997

Features:

- $\cdot 1 \ \mu m$ gate length SACMOS
- \cdot 170×170 μ m² pixels
- •64×64 pixel array
- sensitive to positive charge~500 transistors per pixel
- single discriminator (energy threshold) with 3-bit adjust
- •15 bit counter
- •readout time 384 ms

Val O'Shea

Medipix2 Chip Architecture (I) 2001 16 Collaborating Institutes

Val O'Shea

Medipix2 Chip Architecture (II)

256X55=14080

Val O'Shea

Medipix2 Pixel Cell Layout

Val O'Shea

- ~500 transistors per pixel
- ~33 million transistors per chip
- ~8 µW per pixel (@2.2V)
- ~500 mW per Chip
- 13 internal 8-bit DAC
- <10 ms readout serially
 @100 MHz Clock
- <300 µs readout using the 32bit CMOS parallel port
- 87.5% active area

Bump Bonding

Materials – Silicon

סגומדו אווח a clean waler (א-type) oxidation at 1000°C (200nm)

Photo-resist and masking Etching of the Oxide Implantation with Boron and Phosphorus annealing at 850°C

Contact with Aluminium Front and backside Passivation

Thickness (150), (200), 300, 500, 700, (1000), (1500) μm

Technologically the most advanced of materials for radiation detection

- > Thickness limited by crystal purity (intrinsic Si ~ 1.5 10¹⁰ cm⁻³)
- Not suited to X-ray imaging above ~ 20 kV

- > Hi Resistivity wafers limited to 125 mm diameter
- Many device variants such as CCD's and CMOS imagers using technology push of the IC industry

Materials - GaAs

Complicated by stoichiometry – results in large variations through crystal

Hi Z but inhomogeneities lead to images needing compensation
Technology still being developed for 125 mm
Thick epi layer are expensive and too highly doped

Val O'Shea

Depth-dependent CCE produces poorly resolved gamma spectra:

Same problems with stoichiometry - single crystals difficult

- > Processing much more difficult than other materials
- > Technology still being developed for 75 mm
- > Detectors on single crystals by selection

14 x 24 mm CdZnTe strip detector

6/03/2009

Low Threshold Equalization

Val O'Shea

Cd¹⁰⁹ spectrum

- Threshold scan using the same equalization mask with Cd¹⁰⁹
- Acquisition time per point was $1 \min \Rightarrow$ very low statistics !
- All the matrix unmasked

6/03/2009

A 'dirty' 7.9KeV pencil beam...

- Pencil beam of 10x10 μm^2 hitting the center of pixel (126,93) of chip S3-D3
- A 7.9KeV beam with its 23.7, 32.6 and 39.5 KeV harmonics allowed a simple calibration at a pixel level

Flat Field Correction

- Original image take during 10min with Fe⁵⁵
- 7 flood field images (2 hours each) were taken in order to find a flat field correction matrix

DQE flatfield corrected

Val O'Shea

Imaging capability

Change discriminator to clock

Gossip - Timepix

Integrate gas gain mechanism directly on CMOS

done with transistors

Applications

Neutron Imaging

Autoradiography

X-ray Tomography

Electron Beam Microscopy

Adaptive Optics

Synchrotron Applications

HEP Applications

Dosimetry

Val O'Shea

Nylon Fishing line (0.1 mm)

Quantum Dosimetry

Identify each hit by radiation type and energy from track/cluster shape

Method, Apparatus and Computer Program for Measuring the Dose, Dose Rate and Composition of Radiation

Patent submitted 09/03/'07

36 Electron

38 Photon

40 Neutron

41 Muon

Dosimetry in ATLAS

Dosimetry in ATLAS - 1st Results

- o 14 monitors throughout ATLAS
- o Encouraging initial results
- o Plans to deploy on the LHC machine

Energy resolution

6/03/2009

Detected energy spectrum Spectral source

- Deformation of the detected spectrum depends on pixel geometry
- Simulation W-tube 30 keV, 2.5 mm Al, 300 μm Si sensor

Charge sharing correction

Simulation of charge sharing correction

Summing of signals seen in a cluster of 3x3 pixels

Charge shared spectrum (simulation) Corrected spectrum (simulation)

Medipix3

ALLEN N. L.

Val O'Shea

Figure 6. Medipix3 chip pixel cell layout. 1. Preamplifier. 2. Shaper. 3. Two discriminators containing a 4-bit DAC each for threshold adjustment. 4. Configuration bits. 5. Arbitration logic for charge allocation. 6. Control logic. 7. Configurable counter.

Table 1	L. Acti	ive area	depend	ing on	dicing cu	uts

	In-chip Dicing	X [μm]	Y [µm]	Active Area
Medipix2 and Timepix	None	14111	16120	87.1%
Medipix3 top and bottom WB	None	14100	17300	81.2%
Medipix3 bottom WB	2	14100	~15900 ~15300	88.4% 91.9%
Medipix3 top and bottom TVS	1 and 3	14100		
Medipix3 bottom TVS	2 and 3	14100	~14900	94.3%

dan Juli

Tiling on frame :

flexible design,

- Future Work Tiling of 3D-image stacks
- high accuracy alignment

Basic image cell : vertical hybridisation of detector, read-out electronics & Interface circuitry & connector New RELAXD project - NIKHEF, IMEC and Panalytical

Materials - Cd(Zn)Te

Permits growth of multiple crystals at same time
Currently completed growth trials
2" crystals chosen as research vehicle. Process immediately scaleable to 3"

6/03/2009

Timepix - 1mm CZT

6/03/2009

Comparison of ⁵⁷Co spectral performance

Medipix

oMPX3 back from foundry Feb 09 First results encouraging

oMPX2 licensed to Panalytical (200 units sold in 2008)

oPhilips Healthcare discussing cooperation with Medipix

oMPX2 licensed to Canterbury

oMPX2 dosimeter deployed in ATLAS

oTimepix variant proposed for LHCb VeLo Upgrade One detector for all applications PIXcel can be utilized in a wide range of static and scanning 1-D and O-D applications, including: Thin film diffraction: rocking curves, reciprocal space maps, reflectivity Powder diffraction: rapid scanning, high resolution powder diffraction, kinetic and non-ambient experiments

6/03/2009

Medipix in Space

node cluded)

The Design

The basic componants of LUCID are:

3 Timepix chips 1 neutron-ready Timepix chip Housekeeping electronics Data storage unit **Optical Surface Reflector**

Budgets and Specifications

Mass	0.7kg
Power	3.52W peak
	1W average
Data Capture Rates	4.8 gigabytes/day full mode
	1.1 gigabytes/day partial mod
Data Storage Requirements	4 gigabytes maximum (include
Cost	£35,000
Volume	Within 100 x 100 x 100mm ³
Duty Cycle	Variable
Mission Length	5 years minimum
Location on Satellite	Space side (away from Earth)

LIAR, LW. L.

• Ultimate • Cosmic Ray • Intensity • Detector Langton http://www.thelangtonstarcentre.org/satellite/design.html

LUCIE