
Theoretical Physics 3 (TP3)
Scientific Computing Laboratory

Dr. Christoph Englert, Dr. David Miller
SUPA, School of Physics and Astronomy, University of Glasgow

September 30, 2014

Contents

I Recap: Using a Scientific Linux Environment 3

1 A basic introduction to Linux 3
1.1 Getting Started . 3
1.2 Navigating the File System . 4
1.3 Your path . 7
1.4 Some more useful tips . 7

2 Editing files with emacs 8
2.1 Getting started with emacs . 8
2.2 Windows and buffers . 9
2.3 Editing text . 10

3 Automation and Coding: Shell Scripts, C++ 11

4 Visualising Data: Gnuplot 13
4.1 Putting things together . 15

5 Typesetting: LATEX 15

6 Programming in C++ 16
6.1 Using the C++ tutorials . 16
6.2 Tasks . 17

II Computer Algebra Systems 20

7 A general comment on computer algebra systems 20

1

2 CONTENTS

8 Mathematica 20

9 Using the help 20

10 Basics, Data handling and Visualisation 21
10.1 Solving (Differential) Equations . 21
10.2 Elementary Data handling . 23
10.3 More on Functions . 24

III Numerical Techniques with C++ 25

11 Using computers to solve physics problems 25

12 Numerical Integration 26
12.1 Integrals as averages . 26
12.2 Trapezoidal Rule . 26
12.3 Simpson’s Rule . 27
12.4 Gaussian Quadrature . 28
12.5 Monte Carlo Integration . 29
12.6 The advantages of Monte Carlo integration 30
12.7 The importance of flat distributions . 31

12.7.1 Interlude: Monte Carlo Methods in Particle Physics 33
12.8 Monte Carlo as a physical simulation 34
12.9 Final task . 35

13 Feedback 36

3

Part I

Recap: Using a Scientific Linux
Environment
A lot of what we will discuss in this section will be familiar from P2T, but our review
should be considered a reference for the later sections to make the course self-contained.

1 A basic introduction to Linux

1.1 Getting Started

An operating system (often abbreviated OS or O/S) is the software on a computer
system that is responsible for the management and coordination of activities and the
sharing of the resources of the computer. Probably most of the computers you have
interacted with have had the operating system Windows (in one of its forms). How-
ever, many scientists doing scientific research (and many other computer users too)
use a different operating system called Linux1. Linux is free software and allows open
source development – the underlying source code can be freely modified, used, and
redistributed by anyone.

There are many different distributions of Linux, and some companies will charge for
the distribution, set-up, and user interface of Linux. The version of Linux we will use is
Ubuntu, which is entirely free and can be downloaded from http://www.ubuntu.com.
In order to be as distribution independent as possible, we will avoid using the fancy
functionality of its user interface, and work (almost) entirely from the command line
of a terminal window. The terminal is sometimes referred to as the console or the
shell. So our first task is to open up the terminal and get to know what it is for.

I Task: After logging in to Ubuntu, depending on the version, you will see a menu
labelled Applications on the top left of your screen. Click on this to open the menu,
then on Accessories and finally on Terminal.

Applications −→ Accessories −→ Terminal

Alternatively, if you have the newest version of Ubuntu installed, which runs the
Unity interface, you will see a set of icons to the left of the screen. The top one, a
grey circle containing the Ubuntu logo, is the “Dash home” (which will identify itself
as such if you hover your mouse over it). Click this and a box you can type in should
appear. Type “terminal” in this box and hit enter, and a terminal window will
appear. (Alternatively, before hitting enter you can click on the Terminal icon that
should appear beneath the box. You can also drag the Terminal icon to the menu of

1Linux is a registered trademark of Linus Torvalds.

4 1 A basic introduction to Linux

icons on the left so that in future you can just click on the icon to open a new terminal
window. You can do this with many Ubuntu programs.)

Now you should have a terminal window on your screen which you can move about
by clicking and dragging on the title-bar, or resize by clicking and dragging on the
edges or corners. To manage our files, run programs, compile C++ code and do many
other things, we will type commands into this window (at the command prompt, here
$) followed by pressing enter. Which commands we use varies slightly depending on
the shell we use – here we will be using the bash shell, which is now most standard.

1.2 Navigating the File System

Linux uses a directory structure for organising files (you may be more familiar with
directories being called folders). Each directory may contain files or other directories,
building up a structure a bit like an inverted tree. You can move about in this directory
structure, copy or move files, make new directories or delete old ones and many other
organisational tasks simply by typing commands into the terminal.

Your current working directory

To find out which directory you are currently in, use the command pwd.

I Task: Type pwd (all lower-case) and press enter.

This command stands for print working directory and should return

/home/username

where username will be specific to you. This tells you that you are in a directory called
username which in turn is in a directory called home. /home/username is known as
the path for the directory. Notice that Linux commands are case-sensitive. Also, from
now on I will stop telling you to press enter at the end of commands.

If you ever forget what a command does, or want to find out which options or
syntax you can use with a command, you can access its manual page by entering
the command man followed by the command name you are interested in. The resulting
manual page can be scrolled through using the up and down arrow keys and you can
leave the page by pressing Q.

I Task: Enter man pwd, scroll up and down and return to the prompt by pressing Q.

All commands that you type into the terminal will by default be applied to your
current working directory unless otherwise specified. For example, as you will see later,
a command emacs report.tex would look for the file report.tex in your working
directory and open it using the emacs editor.

1.2 Navigating the File System 5

Changing your current directory

To navigate to another directory, you should use the command

cd destination_directory

where destination_directory is the directory you would like to be your new working
directory. This can be either the entire path of the directory (for example /home/username),
the name of a directory sitting in your current working directory, or “..” (two dots)
which is a shortcut for the current parent directory (similarly one dot, “.” is a shortcut
for the current working directory). Incidentally, this command is an abbreviation for
change directory.

I Task: Enter the command cd .. and then see where you are using pwd. Now
navigate back to your home directory, i.e. /home/username. Note that you can always
return to your home directory, from anywhere, just by using the command cd with no
argument.

Listing the contents of a directory

To list the files and subdirectories of the directory you are currently in type ls. You
can also list the content of directories other than your working directory by typing the
entire path of the directory after ls, e.g. ls /home.

I Task: Explore the manual page for ls and display the contents of the directory
/home in a “long listing format”.

Moving and copying files

To copy a file use the command

cp file destination

where file is the file name (or path to the file) you want to copy and destination is the
either the name of the destination file or the path of a directory you want to copy the file
to. For example, cp /data/p3_t_lab/report.tex . would copy the file report.tex

(if it exists) from the directory /data/p3_t_lab and put the copy in the current working
directory (remember the “.” is shorthand for the current working directory). The
command cd /data/p3_t_lab/report.tex my_report.tex would also copy the file
but the copy in your working directory would now be called my_report.tex.

The command mv (short for move) has a similar functionality, but destroys the
original (i.e. retaining only one file). Obviously you usually cannot move other people’s
files, but often can copy them.

When using one of these commands, * is a wildcard which can be substituted
for any string. So, for example, cp /data/p3_t_lab/*.tex . would copy all files
in cp /data/p3_t_lab which end in “.tex” to the current working directory.

6 1 A basic introduction to Linux

cd Change directory
chmod Change access permissions
clear Clear terminal window
cp Copy one or more files to another location
date Display or change the date & time
diff Display the differences between two files
echo Display message on screen
exit Exit the shell
find Search for files that meet a desired criteria
grep Search file(s) for lines that match a given pattern
gzip Compress or decompress named file(s)
head Output head lines of a file
less Examine the contents of a file in the terminal window
ls List information about file(s)
make Recompile a group of programs
man Help manual
mkdir Create a new directory
mv Move or rename files or directories
pwd Print working directory
rm Remove files
rmdir Remove folder(s)
tail Output tail lines of a file
time Measure program running time
top List processes running on the system
who Print all usernames currently logged in
whoami Print the current user id and name (‘id -un’)

Table 1: Some commonly used bash commands.

Other commands

Some other useful commands in bash shell are given in the Table 1.

I Task: Explore the manual pages for the commands listed in Table 1 (where avail-
able), and familiarise yourself with their usage.

It is not necessary to understand every specific of the commands at this time, but you
should at least figure out what they do. You will need to use many of these commands
later, so remember that you can review their manual pages using the command man.
Pay special attention to cd, cp, mkdir, mv, rm, and rmdir, and feel free to play
about with them (I don’t think you can do any major damage at this point but try not
to delete anything you may need).

1.3 Your path 7

1.3 Your path

All of the commands you have run above are actually little programs (mainly scripts)
which have been placed somewhere in the directory structure. You execute these pro-
grams just by typing their names at the command prompt, but you need to make sure
that Linux knows where they are. You can do this by making sure you include the com-
plete location of the file. For example ./myprogram will run the program myprogram

if it is in the current directory (which you indicted with ./). You can also use the
full path of the program, e.g. /home/username/myprogram, where of course username

should be replaced by your actual username.
If you don’t add the full location of the program, Linux looks for them by examining

your “path”.

I Task: Type echo $PATH to see your current path.

This should show a list of directory locations, separated by colons, and Linux looks
in each of these locations in order to find the file you want to run. You can append
directories to your path by using the command

PATH="$PATH:$HOME/mydirectory"

where /mydirectory is the location of the directory you want to add ($HOME returns
the location of your home directory).

I Task: Make a new directory in your home directory called bin. Make sure it is in
your path by entering echo $PATH and looking to see if it is listed. If it isn’t, use the
command given above to add it to your path, and check that it is now there. You should
now be able to run any executable in ~/bin just by typing its name at the command
prompt.

1.4 Some more useful tips

Also note that you can bypass a lot of the tedium of typing commands in Linux by
using the tab key (the key above caps lock and to the left of q). Typing a partial
command and pressing tab will either give you a list of all commands starting with
those letters or complete the command for you (if the letters typed already uniquely
specify the command). For example, typing mk followed by tab will give you a list of
commands starting with mk, while typing mkd will (probably!) complete the command
to mkdir. This also works for path names and file names, including executables.

You can browse through your previously typed commands (so you don’t have to
type them again) by pressing the up and down arrow keys, and you can browse this
history with the command less ~/.bash_history (the ~/ is shorthand for your home
directory, and the key with “~” is typically just to the left of enter, though this may
vary from keyboard to keyboard). You can reuse commands you previously entered
by typing ! followed by the first letter(s) of the command, e.g. !ma will probably
reproduce your last man command (including argument).

8 2 Editing files with emacs

Finally, you can pipe the output of one program into another using

program_1 | program_2

For example, if your program called my_prog creates a very large output to the screen,
it may be convenient to run it using the command

my_prog | less

which will display the output one screen at a time. Using the symbol > you can also
send output directly to a file. For example,

my_prog > my_prog.dat

would send the terminal output of my_prog to the file my_prog.dat instead.

2 Editing files with emacs

2.1 Getting started with emacs

The text editor we are going to use is emacs (this was originally an abbreviation of
Editor MACroS). You are free to use any editor you like, and if you are familiar and
happy with another editor available with Linux, just skip this section entirely. If you are
not familiar with another editor, emacs is a good one to start with, primarily because
it can be navigated entirely without using a mouse. Though it is less of an issue with
modern computers, you may sometimes find yourself working from a platform where
you don’t have a mouse to navigate and have to rely on keyboard input only.

You can start emacs by typing emacs at the command prompt. This will open a
window running the Emacs editor, and will suspend your terminal until you close emacs
again. Since it is often useful to type commands in the terminal while emacs is open, it
is better to run emacs in the background – that is, run it without a terminal “watching”
it. To do this type & before hitting enter. This can be done with any process, but
bear in mind that messages the process wants to send to the terminal may be lost.

I Task: Open Emacs using the command emacs &.

This should open a new window for emacs, but still let you enter commands in the
terminal. Emacs commands are often entered using the ctrl (short for control) and
alt keys, both in the bottom left of your keyboard. The notation C-x y would mean
“hold down the ctrl key; while it is down, press x; release the ctrl key and press y”.
Similarly M-x y would mean the same procedure but with the alt key instead of ctrl
(the M originally stood for meta).

I Task: Type M-x tetris (hold down the alt key and press x; release the alt and
type “tetris”). Play one game only! (If the emacs window splits into 2 when your game
finishes, turn it back into one using C-x 1.)

2.2 Windows and buffers 9

I Task: Type C-h t (hold down the ctrl key and press h; release the ctrl key and
press t). This starts the emacs tutorial2. The rest of this section will borrow rather
heavily from the emacs tutorial which you can access via C-h t for more detail.

It is sometimes useful to be able to open emacs without a new window. To do this
one would type (in the terminal) emacs -nw where -nw stands for no window. This
opens emacs in the terminal window itself, which is incredibly useful if you are having
difficulty with Linux giving you permission to open a new window, which sometimes
occurs when remotely connecting to another computer.

If emacs hangs (stops responding) you can stop it safely using C-g. You can exit
emacs using C-x C-c.

2.2 Windows and buffers

Emacs can run several windows at once, allowing you to edit multiple texts simultane-
ously.

I Task: Type C-x 2 and you will see the emacs window split into 2. Each of these
windows can be operated on entirely separately, and you can click on the window to
change focus. Type C-x 1 to return to one window.

You can save the text you type into the editor using the command C-x C-s (the
s standing for save). If the editor is currently editing a known file, it will save the
changes you have made. If there is no file yet, it will prompt you for the name of a file,
and create a file with that name in your current directory.

I Task: Type something into the emacs window and save it to a file called test1.tex.

You can edit a text file (which already has stuff in it) by typing C-x C-f (the f

stands for find), and the name of the file you want to edit. You can then edit this file
and save your changes using C-x C-s as before. Note that the file itself is not changed
until you use C-x C-s (that is, emacs does not write to the file as you type) and even
then, it will save the old version of the file with the same name but with a tilde (∼) on
the end.

I Task: Exit emacs, and restart it again. Find the file test1.tex (that you created
earlier), edit it and save your changes. Look in your directory to see the extra file
test1.tex˜.

You can also open emacs so that it starts by with the contents of a file by typing
the file name after the emacs command, for example emacs test1.tex &.

The text you are editing (which can be different from that in the file until you save
it) is called a buffer. You can have multiple buffers active at once, even if you only

2Copyright (c) 1985 Free Software Foundation, Inc

10 2 Editing files with emacs

have one emacs window. When you open a new buffer, using C-x C-f emacs creates
the new buffer in your current window, but doesn’t forget the information in the old
buffer. You can switch back to it any time you like using C-x C-f again.

I Task: Type C-x C-f test2.tex to open a new buffer, type a few words in, and
then switch back to test1.tex using the command C-x C-f test1.tex.

You can list all the current buffers with the command C-x C-b, and get rid of the
buffer list using C-x 1. Don’t forget that you can view different buffers simultaneously
by having more than one window.

2.3 Editing text

You can enter test just by typing and remove text again using either backspace
or delete. backspace removes the character just before the cursor while delete
removes the character at the cursor. You can also delete the character just after the
cursor using C-d, delete the next word using M-d, and delete to the end of the line using
C-k, or the end of the sentence using M-k.

You can also delete any portion of the buffer by first placing a (non-visible) mark at
the start of the text you want to remove using M-space (alt together with the space
bar), and then moving the cursor to the end of the test you want to remove and typing
C-w (w stands for wipe).

Any text removed using M-d, C-k, M-k or C-w (that is, anything other than just a
single letter) is temporarily remembered by emacs and can be reinserted where ever
you like (even in a different buffer) by moving the cursor to the reinsertion point and
typing C-y (y for yank).

I Task: Remove the last two words from test1.tex (using M-k or M-space and C-w),
and copy them into test2.tex (using C-y).

You can access previously deleted material by typing M-y (as many times as you
like) after C-y. Additionally, you can undo the last edit you made by typing C-x u (u
for undo). You can do this multiple times, progressively undoing all your edits.

One more command is very useful: M-% (this has a little tricky fingering since you
need to use alt but also shift to get at the % character on most keyboards). At the
bottom of the buffer you will be prompted with Query replace: and if you type in a
word of phrase (followed by enter) you will be prompted with: and can type another
word or phrase. Emacs will then move through the rest of the file looking for the first
phrase and replacing it with the second phrase. In this version of the command, it will
always ask you whether to replace or not (respond with y or n).

11

3 Automation and Coding: Shell Scripts, C++

Shell Scripts

A shell script is a plain-text file that contains shell commands (commands like mkdir

and mv that you saw earlier). It can be executed by typing its name into the terminal,
or by placing its name in another shell script.

I Task: Before going on, we want to make sure that ~/bin is in your path. You added
it manually to the path earlier, but this resets every time you log off. We want this to
be added automatically via your login shell.

Look to see if ~\bin is in your path (it will be listed with the full path, including
your username, rather than the abbreviation ~). If it isn’t, we will want to include the
following in ~/.bashrc:

Set PATH so it includes user’s private bin if it exists

if [-d "$HOME/bin"] ; then

PATH="$HOME/bin:$PATH"

fi

This should make sure that ~\bin is included in your path for every terminal you open.

I Task: Open the web browser Firefox (can you do this from the terminal?) and go
to the following address3:

http://www.linuxcommand.org/writing_shell_scripts.php

Note: You may have to set up your proxies first. Just follow the instructions in the
browser.

Read the tutorial, and follow the examples by creating and running your own shell
scripts, up to an including Section 9. Feel free to go further if you have plenty of time
and are interested.

I Task: Write a shell script called welcome.sh, which, when executed prints to the
screen either “Good Morning”, “Good Afternoon” or “Good Evening”, according to
system time. Once it is working, move this script into your bin directory and execute
it in .bashrc to make it run whenever you log-on to the system.

I Task: Go back and reread the script earlier in this section (after the first task).
Do you understand the script? This allows you to put all your scripts in the directory
~/bin and have them executable from any directory. The variable PATH is essentially a
list of where the OS is allowed to look for programs that you try to run at the command

3Copyright (c) 2000-2012, William E. Shotts, Jr.

12 3 Automation and Coding: Shell Scripts, C++

line - so if you execute a script program by typing its name, the OS will first look in
your current directory, and if it can’t find the script (or program) it will explore the
directories in your PATH until it finds it.

Compiling C++ programs

In subsequent weeks you will be taught how to program in basic C++ (in actuality, you
may not get far enough to see the sort of things which distinguish C++ from vanilla
C, such as “classes”). You will see that the source code is written in a simple text file,
which must then be compiled to produce an executable which can be run to perform the
desired task.

You can compile a C++ program by using the command g++. For example, if the
name of your program file is prog.c, to compile it you may type:

g++ prog.c

(To compile a C program, you can also use the command gcc.) If there are errors in
your program the compiler will show them on the screen and then return you to the
prompt. You should then correct these errors by opening the program in emacs.

After you have corrected your errors, you may use the same g++ command to compile
it again. If there are no errors in your code the compiler will return you to the prompt
without any error messages. This means that your code has been compiled into a
separate executable file which by default is named as a.out. You may run the code by
typing a.out.

If you wish to give a specific name to your compiled program (suppose you want to
call it my_prog.out) you may do this by using the option -o and specifying the name
of the executable. For example,

g++ -o my_prog prog.c

will produce an executable called my_prog.

I Task: Copy the file hello world.c from the directory /data/p3 t lab. Unfortu-
nately, our computer cluster set-up changes from year to year, depending on class size,
room availability and computer availability, so /data/p3 t lab may not be visible from
your machine. In case it is not, the contents of /data/p3 t lab have also been placed
in http://www.physics.gla.ac.uk/~dmiller/TP3/ so that you can still access them.
Once you have copied the file to your home space, try and compile it. To check how a
typical error message looks like, try removing the semicolon in, e.g., the

cout << "Hello World!" << endl;

Note that in order to run the executable you may need to type ./a.out if your current
directory is not in your path. (Alternatively you could add PATH="$PATH:." to your
.bashrc so that your current directory is always in your path.)

We will come back to compiling C++ codes using Makefiles later when we look at
C++ more closely.

13

4 Visualising Data: Gnuplot

Numerical simulations or calculations performed using a programming language like
C++ often return data as columns of numbers in output files. In order to present this
data, you have to use some package to plot the data in graphs that can be included in
your report or paper. We are going to use gnuplot for this, though there are many other
choices you could make. We will use gnuplot because of its widespread availability (it’s
free) and its convenient interfacing with the typesetting package LATEX which we will
use for writing reports. People in my own field (Particle Physics) usually use a package
called Root but this is overly complicated for the sort of things we want to do here (and
rather user unfriendly).

I Task: Open your browser and navigate to

http://security.riit.tsinghua.edu.cn/~bhyang/ref/gnuplot/index-e.html

where you will find a tutorial on gnuplot. Follow at least the first two and last two
sections – you can skip most of the middle two if you like, but also read “Output in the
Postscript format”.

I Task: Copy the file gaussian.c from the directory /data/p3_t_lab. This is a little
C++ program which calculates a the value of the Gaussian function,

f(x) =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
,

for equally spaced values of x and writes the x and f(x) into an output file. Compile
and run the program, entering your own values for the mean, standard deviation etc,
and call the output file gaussian.dat.

I Task: Now write a gnuplot script to plot the data in gaussian.dat and output as
a postscript file gaussian.eps.

You can view an eps or ps file using ghostview via gv filename.eps, if it is installed.
If ghostview is not installed you should use evince via evince filename.eps. It should
look something like Figure 1.

I Task: Now produce a plot as a postscript file gaussian_multi.eps, which shows
three separate Gaussian distributions, each with the same mean but with different
standard deviations. Include a key on your plot.

I Task: Can you similarly produce a 2d plot showing

f(~r) =
1

σ
√

2π
exp

[
−(~r − ~µ)2

2σ2

]
,

using x and y (~r = (x, y)) as the axes and different colours to represent the value of
f(~r)? It should look something like Figure 2

14 4 Visualising Data: Gnuplot

Figure 1: A Gaussian distribution centered around x = 6 with standard deviation of 2.

Figure 2: A 2-dimensional Gaussian distribution centered around (x, y) = (6, 6) with
standard deviation of 2.

4.1 Putting things together 15

4.1 Putting things together

A common problem that you might encounter in your projects is to repeat the same
task multiple times, like plotting the same histogram for different parameter choices or
measurement series. A similar problem can arise when you might be hosting a webserver
in the future (i.e. totally unrelated to physics).

This can quickly become a tedious exercise and asks for automation! There are
obviously many ways to tackle such issues using scripting languages like bash or python.
Let’s do a task to see how you can do this in a quick and straightforward way.

I Task: Get the data set www.christophenglert.co.uk/histograms.tar.gz (you
might want to use the terminal and wget to download it. Extract the data set, you will
find 12 histogram files in a two column format with gnuplot-specific headers (have a look
with Emacs). In fact a single file contains multiple histograms: Use gnuplot histo_1

to generate a postscript file from the gnuplot source to see for yourself!
We are interested in what particle physicists call an invariant mass distribution: local

excesses in such distributions are new particle resonances that get produced abundantly
at collider experiments like the CERN LHC. Look in the source file for “mZZ”; the
histogram that is listed after the header information is the one we are after.

Now to the actual task: Write a bash script that extracts this particular histogram
and parses it to a specifically labelled file, i.e. the invariant mass distribution of histo_1
should be stored in file1.dat. Plot all extracted histograms in a single pdf file gener-
ated with gnuplot with a logarithmic y axis.

What you are seeing is in fact a Monte Carlo simulation (we deal with this technique
later in the course) of Higgs boson production at the LHC. The Higgs boson is the peak
at 125 GeV and the height of the peak as well as the tail of the distribution is sensitive
to the presence of new, yet to be discovered physics. The different curves are exactly
that: new physics that shifts the curves up and down. By measuring this distribution
at the LHC and comparing it to such calculations we can constrain the presence of such
new physics or even discover it!

5 Typesetting: LATEX

Many, if not most, research physicists write their scientific papers using a package called
LATEX(pronounced lah-tek). For example, it is the preferred format for submission at
arXiv.org (an on-line archive for papers in physics, mathematics, computer science,
quantitative biology and statistics). This is because it has by far the best utility in
typesetting mathematical formulae of any package available. In fact, this document is
written using LATEX.

Most of the editors you are probably more familiar with are wysiwyg, that is
what-you-see-is-what-you-get. The document you will finally print looks exactly like
the document you are typing in. This is not so for LATEX – you need to write your text
and commands in a file of the form filename.tex and “compile” it using the command

latex filename

16 6 Programming in C++

This will produce a dvi file called filename.dvi which you can turn into postscript
using

dvips filename

(Remember that you can view postscript using gv.)

I Task: Using your web browser, navigate to

http://www.andy-roberts.net/misc/latex/

and follow the tutorial on LATEX. If you need more detail, take a look at latex_short.pdf
in the /data/p3_t_lab directory. (You can also view pdf files using gv.)

I Task: Write a shell script which will, with one command, LATEX a file (given in
the command line), run dvips on the resulting file to produce a postscript output and
remove all the intermediate and junk files like .dvi, .aux and .log.

I Task: Write a LATEX template for a report. By “template” I mean that you should
include a title, abstract, an introduction, conclusions, and a bibliography, but the con-
tent of these is unimportant (for now). However, also include in the main body the
equation described in Section 5, and a figure containing the plot from the last task of
section 5 (with a caption). Also refer to both the equation and the figure in the main
text using automatic label numbering (i.e. \label and \ref). This will provide you
with a template for a report you will write later. You might want to check out BibTeX,
too. This is a typesetting add-on for LATEX(keep in mind that you will have to execute
the latex command multiple times before you bibtex for all necessary log files to be
present).

For more on the integration of LATEX and gnuplot (which is essential if you want axis
labels, titles or legends with complex mathematics) also take a look at:

http://www.gnuplot.info/docs/tutorial.pdf

6 Programming in C++

6.1 Using the C++ tutorials

In the second part of our laboratory on Scientific Computing we will give a quick re-
minder of how to program with C++. Knowledge of a computing language if essential
to scientists because most advanced physics problems do not have easily obtainable
analytic solutions. Even when they can be solved analytically, the evaluation of the
solutions for particular parameters would be tedious (and error producing) to do by
hand, particularly if the solution is required for more than one set of parameters. Com-
puters allow us to do calculations which would otherwise be impossible or impractical
to do by hand.

6.2 Tasks 17

For a long time, FORTRAN77 was the language of choice, and indeed is still used by
many researchers. However, the more standard choice now-a-days is C++, so that is
the language we will learn here. This has the advantages of allowing object orientated
code, and of being the most widely used computer language in the “real world” outside
of academia (thus improving your job prospects if you can put it on your CV). You
should be careful not to confuse C++ and C. C is very like C++ except that it lacks object
orientation and a few other features. Incidentally, Linux is written in C.

In fact, the widely used GNU compilers do not make too much of a difference
between the supported languages, however, it is clear that object-orientation is a key
feature of C++ and its full functionality is, with some exceptions, is reserved to source
code written in C++.

It is worth pointing out that coding is a very dynamical skill, which is best acquire
through “learning by doing”. Programming and scripting languages like C++ and bash
are subject to constant improvements and developments. Examples for this are recent
developments leading to Objective-C, Python, Swift, C# etc. The logical basics behind
coding and its application to physics problems, however, remains the same. The choice
of programming language then depends on the type of a problem (e.g. creating a fancy
webpage vs simulating Higgs boson production at the Large Hadron Collider), taste,
and code elements that are already available.

We will tackle a number of fairly easy tasks to brush up your C++. Again online
courses and tutorials will be helpful throughout this part. Some of the best publicly
available online tutorials on C++ can be found at the following web addresses:

http://www.learncpp.com/

http://www.cplusplus.com/doc/tutorial/

http://www.cprogramming.com/tutorial.html#c++tutorial

We will be using the first of these, but they are all very good, so I encourage you to
take a look at the others one as well (bookmark them in your browser). If there are
any concepts that we cover which are not clear to you from reading the first tutorial,
have a look at the others and see if it makes it any clearer.

Remember to document your work. Also remember that the best way to learn
programming is to try it for yourself, so feel free to copy and paste code examples from
the tutorials and try them for yourself - experiment by altering them a bit and see what
happens.

6.2 Tasks

There are no assigned tasks for Chapter 0, while for Chapters 1 and 2, the tutorial’s
“comprehensive quiz” should be done. With all tasks, remember to properly document
your work - your programs should be properly commented and you should keep a
record of some sample outputs. You should also be aware that the chapters each task
is assigned to are meant as a guide for when you should be ready to tackle them - but
if you want to do then out of order, or read ahead further before completing them, that
is fine too.

18 6 Programming in C++

I Task: A checkout operator wants to minimize the number of bank notes (and pound
coins) they give out in change. Write a C++ program that accepts as input a value for
the change in pounds and returns the configuration with the minimum of notes. For
example, if the user enters 68, the program should return:

Number of 20 pound notes = 3

Number of 10 pound notes = 0

Number of 5 pound notes = 1

Number of 1 pound coins = 3

I Task: Write a C++ program to convert a temperature in Fahrenheit to Celsius and
Kelvin. The program should ask for the temperature in Fahrenheit from the user and
return the Celsius and Kelvin values.

I Task: Write a program which will raise any number x to the power of an integer
n, where x and n are inputted by the user. (Also try using something else than the
standard function pow()!)

I Task: The Fibonacci sequence {an} is defined by,

a1 = 1,

a2 = 1,

an = an−1 + an−2 for n > 2,

giving
1, 1, 2, 3, 5, 8, 13, 21 . . .

Write a C++ program which takes an integer as input from the user and returns an.

I Task: Write a program that prompts the user to enter an integer between 1 and
1000 and tells them whether or not it is a prime number.

I Task: Write a program that allows the user to enter an arbitrary (i.e. user defined)
number of real numbers, and returns their mean and standard deviation.

I Task: Write a program which counts (and returns) the number of characters in its
own source code file, excluding blanks.

I Task: Write a program that uses 2-dimensional arrays to multiply together two user
defined matrices.

I Task: Repeat the earlier task where you returned the nth term of the Fibonacci
sequence, but this time, implement it in a function (i.e. fib(n) returns the integer an).
Don’t use any loops - do it entirely with a (single) function.

I Task: Write a program that allows the user to enter an arbitrary sized (i.e. user
defined) square matrix, and returns its inverse (nicely formatted please!). Both the
input of the matrix and the inversion itself should be done via functions.

6.2 Tasks 19

I Task: Make a class for arbitrary sized square matrices. It should contain functions
for multiplying matrices together, taking the inverse and calculating the determinant.

20 9 Using the help

Part II

Computer Algebra Systems

7 A general comment on computer algebra systems

In physics we often deal with complicated systems and highly non-linear dynamics.
For example in particle physics we are forced to make very complicated numerical
simulations to obtain a realistic modeling of collisions as we observe them at the Large
Hadron Collider in Geneva.

“Quick-and-dirty” numerical solutions might solve easy problems, but it is almost
certain that sooner or later you will encounter a problem that cannot be solved by
simply putting it on a computer. This can have multiple reasons: The code becomes
too big to compile or it becomes to slow at runtime because you are performing a
lot of useless calculations that could be simplified if you had access to the analytical
expression. Sometimes you might also want to understand the dynamics of system by
directly checking the mathematical formulae, this is obviously impossible if you will
just have a numerical implementation.

Quite obviously, we can only scratch the surface of this tool in two weeks and you
should think of this section as a guided introduction to the world of Computer Algebra
systems. There is enough time during the labs to try out own ideas and maybe even
cross check some of your exercises for the supervisions.

8 Mathematica

This is where Computer Algebra Systems come into play. There are a number of these
programs, but we’ll use Wolfram’s Mathematica because it’s widely used. Math-
ematica is very (very!) powerful. You can perform a whole range of analytical but
also numerical evaluations, and the idea of this part of the course is to give you an idea
about how you can use it to solve your problems in the future. In particular we will
see how to read in and output data, manipulate it, visualize it, and fit it to arbitrary
functions. We will see how to analytically as well as numerically solve (complicated)
differential equations, which would normally want to pull your teeth out.

To access Mathematica, switch to Windows and start the program there.

9 Using the help

There is a comprehensive help functionality in Mathematica. If you want to find a
specific functionality you can also browse Wolfram’s webpage or, as always, try Google.

I Task: Try

?Plot

21

and hit shift+enter (this tells Mathematica to execute the command). Note that
Mathematica is case sensitive! You’ll get a short description about how to plot simple
functions; click on “>>” to get more information. Read through the page to plot

f(x) = x2 , g(x) = sin x

into a single panel. You can export by right-clicking on the canvas and follow the
context menu.

10 Basics, Data handling and Visualisation

10.1 Solving (Differential) Equations

As alluded to above, one of Mathematica’s strengths lies in the analytical handling
of big equations. This functionality can be accessed with Solve or NSolve if you are
interested in a numerical solution in case there is no closed analytical one.

I Task: We start with a simple example. Type

f[x_] := x^4 - x^3 - x^2 + 1

This is how you define a function in Mathematica. Try output f(y) or f(z). Plot f
on the interval [−1, 2] and f ∈ [−1, 1]. Find the roots of the equation and the maxima
and minima of f(x) only using Solve and D to compute the derivatives.

I Task: Let’s do something related to the Higgs mechanism that underpins electroweak
symmetry breaking and which predicted the existence of the Higgs boson discovered in
2012. The Higgs field has a potential energy density

V (|φ|) = −µ2|φ|2 + λ|φ|4

with λ, µ2 > 0. Find the minimum of the potential energy which we call v/
√

2 (the
vacuum, i.e. the state with lowest energy). What is the value of v as a function of µ2

and λ?

I Task: Consider the following differential equation

µ
dg

dµ
= − 7g3

16π2

Find the analytical solution (on paper) and compare your result against the Mathe-
matica’s solution using the DSolve command. What happens if you change the minus
sign to a plus sign? Directly access the numerical solution via NDSolve and plot the
difference of analytical and numerical solution as a function of µ.

In fact the above equation is very famous, and even that famous that David J.
Gross, Hugh David Politzer, and Frank Wilczek received the Nobel Prize in 2004 for

22 10 Basics, Data handling and Visualisation

writing it down for the first time. It describes how a the strong interaction scales
when it is probed at smaller and smaller distances ∼ µ−1. Since g ∼ 0 for large µ, the
theory of strong interactions behaves like a theory without interactions at large energies
(the minus sign is crucial!). This insight is a basis of the theoretical underpinning of
contemporary Particle Physics at Hadron Colliders such as the LHC.

I Task: Consider te following set of differential equations

µ
dg1
dµ

=
41

6

g31
16π2

µ
dg2
dµ

= −19

6

g32
16π2

µ
dg3
dµ

= −7
g33

16π2

µ
dλ

dµ
=

(
3g41
8

+
3g21g2

4
+

9g42
8
− 6y4t − (3g21 + 9g22 − 12y2t)λ+ 24λ2

)
/(16π2)

µ
dyt
dµ

=

(
9y2t
2
− 17g21

12
− 9g22

4
− 8g23

)
yt/(16π2)

subject to the initial conditions

g1(80) = 0.35, g2(80) = 0.62, g3(80) = 1.22, λ(80) = 0.13, yt(80) = 1

Plot the solution curves in a single canvas. Can you find an input value for which λ
becomes negative for large µ?

What you have solved here is the Renormalization Group Equations of the couplings
in the Standard Model. This tells you how the coupling constants scale with the energy
at which we probe them. λ is a very particular parameter as we have seen in the previous
task! It is a necessary parameter to have v 6= 0. If λ < 0 then we only encounter the
trivial vacuum of the previous task v = 0. At high enough energy the vacuum would
destabilize and we would have a first order phase transition from our vacuum to the
trivial vacuum.

As a consequence, the weak interactions would be a lot stronger and the proton
would outweigh the neutron, we would have inverse beta decay at a very rapid rate.
Hydrogen could not form not speaking of a complex chemistry like us! You can translate
the validity range of λ onto a validity range of the Higgs boson mass, and the observed
125 GeV is consistent with a stable Universe (thankfully).

Note that the solutions to the coupling constants g1, g2 and g3 almost overlap at
high µ. If they actually meet there is a chance that they can be described in terms of
a single coupling g at the energy at which they meet. In particle physics we interpret
this as a potential sign of grand unification, where all interactions follow from a single
one. Obviously this is not the case for the SM spectrum. However, in supersymmetric
extensions of the SM we get corrections to the above equations an in fact the curves
meet in a single point. This among other reasons is why Supersymmetry is one of
theoretical physicists’ most beloved theories.

10.2 Elementary Data handling 23

Let’s have another look at a standard problem in Theoretical Mechanics:

I Task: Solve the harmonic oscillator equation

θ̈ = −kθ (2)

using DSolve for initial conditions θ(0) = 1, θ̇(0) = 0.

You all know that the harmonic oscillator is a solution for a pendulum with small
amplitude. In this case we expand the equation of motion. But we can do the whole
thing numerically!

I Task: Solve the differential equation

lθ̈ = −g sin θ (3)

numerically for the same initial conditions, you can assume g/l = 1 and forget about
units. Compare the two results graphically.

10.2 Elementary Data handling

I Task: Lets do some data manipulation; access one of the file from a previous task
of Sec. 4.1. Read in the data set using Import. Define an empty list, you can do this
by

mylist={};

Fill the list with the read-in data from the file. You will need the Do and Append

functions to loop over the initial data set and redefine the empty list. Plot the list
copied list using ListPlot.

Sometimes data in the tails of distributions can become a bit bumpy if you have
used Monte-Carlo driven methods to simulate it and you might need to extrapolate it
or determine the parametric dependence of the histogram on some underlying model
parameters (like the mass of a particle for instance). To do this it is often convenient
to fit a distribution. Mathematica can fit arbitrary functions (in principle) with the
NonlinearModelFit functionality.

I Task: Create a new list and fill the list with entries that have an x axis value bigger
than 400. Plot the list on a logarithmic scale with ListLogPlot. What function would
you pick as function to fit the data? Fit that function to the data, overlay data and
function in a single plot and also include the 95% confidence level bands. Is the fit
reliable?

I Task: Instead of fitting the data directly, create a list that stores the logarithm of
the y values and repeat the previous task.

24 10 Basics, Data handling and Visualisation

Plot Plot functions
ListPlot Plot lists
ListLogPlot Plot lists on a logscale
Plot3d Plot 3d functions
Simplify Simplify algebraic expression
FullSimplify Higher level simplification of algebraic expression
Series Taylor Expansion of functions
Integrate analytical Integration
NIntegrate numerical Integration
Diff Differentiation
DSolve Solve differential equations analytically
NDSolve Solve differential equations numerically
NonlinearModelFit Fit arbitrary functions

Table 2: Some helpful Mathematica commands.

10.3 More on Functions

Mathematica is not only capable of doing (pseudo)numerical operations, but you can
also define intrinsic functions.

I Task: Define a function that Taylor-expands an arbitrary function f(x) around
x = 0 and returns only the term linear in x, e.g.

f(x) = 1 + x+ x2
returns

=⇒ x . (4)

Try the function with f(x) = sin(x), cos(x), exp(32π2/x2). Why is there an issue with
the last function? What is the generalization of the above function to monomials of
arbitrary degree?

I Task: Take the function of the previous task and modify it such that you compare
the numerical integral value of the returned function to the numerical integral value of
the original function for input interval x ∈ [a, b].

25

Part III

Numerical Techniques with C++

11 Using computers to solve physics problems

The vast majority of real life physics problems do not have simple exact analytic solu-
tions that can be easily obtained. Even for your lecture courses, your lecturers often
go to great lengths to think up special case examples that you can solve analytically.
This leaves two options:

• make approximations so that an approximate solution can be found (perturbation
theory in quantum mechanics is a good example of this);

• solve the mathematics numerically after completing as much of the calculation
analytically as is practical.

In this course, we will focus on the latter. Remember, however, that you can always
try to and should cross check results against different calculations using, e.g., Mathe-
matica.

In most cases, numerical problems in physics boil down to one of three things:

Algebra: the manipulation of numbers, vectors, matrices etc., whose manipulation,
though conceptually straightforward, is too long and arduous to do by hand.
Hopefully, the course on C++ has equipped you to handle this already (for example,
inverting a large matrix), so we won’t cover this in any more detail here.

Numerical Integration: Most often our analytic calculations are stopped by encoun-
tering a nasty integral. Maybe it doesn’t have a closed form, or if it does, it is too
complicated to reliably write down, or maybe we just want the flexibility to change
the integral’s boundary conditions without having to recalculate everything. This
is probably the most important class of numerical problem for physics, so this is
where we will spend most of our time.

Differential Equations: Many of the laws of physics are described in terms of dif-
ferential equations. For example, wave mechanics, quantum mechanics, fluid me-
chanics, thermodynamics, electromagnetism, general relativity and even classical
dynamics, all involve differential equations.

Root Finding: Often in solving equations in physics one has to find the roots of some
complicated function or polynomial. This can be a highly non-trivial task, and
must often be done numerically. Unfortunately we won’t have time to go into this
here.

This categorization is not exclusive - there are many other cases - and, of course, it is
rather fluid. Many problems that appear at first sight to require a numerical treatment

26 12 Numerical Integration

of differential equations are more easily done via numerical integration. An obvious
example would be solving the differential equation,

dy

dx
= f(x), (5)

which can be expressed instead as,

y =

∫
f(x) dx. (6)

(One cannot always do this though since the right-hand side may be a function of both
x and y, i.e. f(x, y).)

12 Numerical Integration

12.1 Integrals as averages

In essence, all numerical integrations are attempts to find the mean value of a function
over a (possibly multi-dimensional) integral,

I =

∫ x2

x1

f(x) dx = (x2 − x1) 〈f(x)〉. (7)

The most obvious way to calculate this numerically is simply to take some example
choices of x, let’s call them xi with i = 1 . . . N , calculate f(xi) and take the average of
value of f(xi) to approximate the mean,

I ≈ (xN − x1)
1

N

N∑
i=1

f(xi). (8)

We could be slightly more sophisticated and put weights wi on each of these to make
some choices of xi more important than others,

I ≈ (xN − x1)
1

W

N∑
i=1

wif(xi), (9)

where the extra normalisation factor is W =
∑N

i=1wi. Different numerical integration
techniques differ in their choice of how to pick a representative sample of xi and their
relative importance (what weights to choose).

12.2 Trapezoidal Rule

The trapezoidal rule, in its simplest form, is simply approximating the area under a
curve by that of a trapezoid. Clearly, this is Eq.(9) with N = 2 and wi = 1/2. We
could go further and split up the integration region into lots of little trapezoids of equal

12.3 Simpson’s Rule 27

Figure 3: A graphical representation of the simplest (N = 2) trapezoidal rule.

spacing in x. The total area will then be the sum of these smaller areas which we can
approximate via a trapezium. So,

I ≈ (x2 − x1)
1

2
(f(x1) + f(x2)) + (x3 − x2)

1

2
(f(x2) + f(x3))

+(x4 − x3)
1

2
(f(x3) + f(x4)) + . . .+ (xN − xN−1)

1

2
(f(xN−1) + f(xN)) (10)

= (xN − x1)
1

N − 1

[
1

2
f(x1) + f(x2) + f(x3) + . . .+ f(xN−1) +

1

2
f(xN)

]
, (11)

where, in the last step, we have assumed that all the intervals of equal size (so for
example, (x2 − x1) = (xN − x1)/(N − 1)). Clearly this is Eq.(9) with w1 = wN = 1/2
and wi = 1 for 1 < i < N .

I Task: Write a C++ code to calculate the integral

I =

∫ 2

0

[
2 + cos(2

√
x)
]
dx,

using the trapezoidal rule. In this case, the integral is doable analytically, so compare
your answer to the correct expression for N = 2, 4, 8, 16. Can you see any pattern in
the error’s dependence on N?

12.3 Simpson’s Rule

In the trapezoidal rule we are essentially approximating the curve by a set of straight
lines between fixed points on the curve. We could have instead approximated the curve

28 12 Numerical Integration

Figure 4: A graphical representation of the simplest (N = 3) Simpson’s rule.

using a set of parabolas rather than straight lines, and if the curve is quite “wiggly”
(that is, not straight) we might expect to do a little better, see Figure 4.

You can calculate the area under a parabola quite easily, and anchoring it at the
end and in the middle we find,

I ≈ (x3 − x1)
1

2

[
1

3
f(x1) +

4

3
f(x2) +

1

3
f(x3)

]
. (12)

This does much better than the simplest trapezoidal rule. The generalization to more
points (in exactly the same way as we did for the trapezoidal rule) is,

I ≈ (xN − x1)
1

N − 1

[
1

3
f(x1) +

4

3
f(x2) +

2

3
f(x3) +

4

3
f(x4) + . . .

+
2

3
f(xN−2) +

4

3
f(xN−1) +

1

3
f(xN)

]
, (13)

or in other words Eq.(9) with w1 = wN = 1/3, wi = 4/3 for 1 < i < N and i even, and
wi = 2/3 for 1 < i < N and i odd.

I Task: Repeat the last exercise using Simpson’s Rule. What is the dependence of
the error on N this time?

12.4 Gaussian Quadrature

In the previous example, Simpson’s Rule, we used a parabola to mimic the behaviour
of the function over the range (x1, x3) and then extended this by dividing our integra-
tion up into lots of “mini-integrations”. We could have taken an alternative approach,
and instead of dividing up the region, we could have mimicked the function with more

12.5 Monte Carlo Integration 29

complicated polynomials. Clearly these more complicated polynomials would also re-
quire more points in order to specify them, but if we choose a set of polynomials which
is complete (i.e. any well behaved function can be built out of them) then we should
be able to get arbitrarily close to the exact answer just by including more of them.
The terminology is that an n-point Gaussian Quadrature yields an exact result for the
integration of a 2n− 1 degree polynomial.

There are many different types of Gaussian Quadrature, depending on the polynomi-
als you choose to mimic your function with. Examples of these functions are Legendre
polynomials, Jacobi polynomials, Chebyshev polynomials, Laguerre polynomials, Her-
mite polynomials and many more. Since you have not met most of these functions yet,
this integration method is a little too advanced for this course and we won’t take it any
further.

12.5 Monte Carlo Integration

In principle, it shouldn’t matter how we choose our xi and our weights wi, we should
eventually, for N large enough, reproduce the correct answer for any well behaved
function. (Although how we choose our xi and wi does effect how fast we converge on
the correct result.) Monte Carlo integration takes this principle to the extreme and
chooses the xi randomly!

Looking again at Eq.(9) (this time with weights wi = 1 for simplicity),

I ≈ (xN − x1)
1

N

N∑
i=1

f(xi), (14)

we see no specification for the values xi. We just assumed that they should be uniformly
spaced, but this didn’t need to be the case.

I Task: Repeat the numerical integration of

I =

∫ 2

0

[
2 + cos(2

√
x)
]
dx,

this time using random values for xi and unit weights. You can use the C++ function
rand() to generate random numbers. How fast does this converge?

If you have done the above tasks correctly, you will see that the Trapezoidal Rule has
an error ∝ 1/N2, Simpson’s rule has an error ∝ 1/N4 and the Monte Carlo integration
has an error ∝ 1/

√
N .

In fact, the error of a Monte Carlo integration is related to the standard deviation,
σ, of the integrand over the region. For a one dimensional integration, this is defined
by,

σ2 =
1

N

N∑
i=1

[
f(xi)− f̄

]2
=

1

N

(
N∑
i=1

[f(xi)]
2

)
− f̄ 2 (15)

where the mean is,

f̄ =
1

N

N∑
i=1

f(xi). (16)

30 12 Numerical Integration

Then the Monte Carlo error is
σMC =

σ√
N
. (17)

12.6 The advantages of Monte Carlo integration

So if the convergence of Monte Carlo integration is slower than the other methods we
have already looked at, what is it good for?

• Fast convergence for many dimensions: Although the other methods give
much smaller errors for one dimensional integrations, their errors grow with the
number of dimensions. For a d dimensional integration, the Trapezoidal Rule’s
error is ∝ N−2/d and Simpson’s Rule’s error is ∝ N−4/d, but a Monte Carlo
integration error is always ∝ 1/

√
N .

• Easy to incorporate awkward boundary conditions: In the one dimensional
cases we have looked at so far, the boundary conditions were rather trivial (just
numbers), but for higher dimensional integrations they can become quite complex
(surfaces). This make the other rules quite difficult to program because you need
to know explicit formulae for the boundaries in terms of the variable you are
integrating over. For Monte Carlo integration, you can simply choose to generate
the ~xi over a larger space which has simple boundaries, check whether or not the
point lies in the space you are interested in, and throw it away if it isn’t.

• Small feasibility limit: You can see that the trapezoidal rule and Simpson’s
rule both need at least two or three xi before you even start. While this is fine for
small numbers of dimensions, for larger dimensional integrals you need to have
at least this number of points raised to the power of the number of dimensions.
For example, for a 10-dimensional integration, Simpson’s rule needs a minimum
of 310 = 59049 points! This is not the case for a Monte Carlo integration where
in principle one point (or two if you want an estimate of the error) will do (but
of course would give very bad errors).

• Ability to improve the calculation: For other integration methods you are
“locked in” to the accuracy you choose at the start of your calculation. For
example, in Simpson’s rule, you choose N and then set your xi and wi accordingly.
If you then decide that your answer is not accurate enough, you need to increase
N and start the calculation again. For a Monte Carlo integration you can just
keep adding points until you get the accuracy you want - N is not fixed at the
start.

• Integration as physical simulation: Many physics systems are stochastic,
relying on apparently random effects (e.g. thermodynamics) or possible even truly
random effects (e.g. quantum mechanics). Monte Carlo’s can then model physical
systems where each generated point is analogous to a physical event. This gives
a much more intuitive physical picture of what is going on in the Monte Carlo
integration/simulation.

12.7 The importance of flat distributions 31

I Task: To demonstrate the second of these advantages, write a C++ program to
calculate the volume of a sphere embedded in n ≤ 10 dimensions. Compare your
numerical result against an analytical calculation. For 10 dimensions you should get

V =
π

120
r10,

where r is the radius. (This problem is much easier than it sounds, so if you are having
trouble figuring it out, please ask one of the demonstrators for hints!)

I Task: Consider a crescent, as seen in Figure 5, and bounded by the curves,

x2 + y2 = a2, (18)

(x− c)2 + y2 = b2, (19)

were a, b and c are constants with b < a and a− b < c < a+ b. Assuming it is uniform
in the z-direction (out of the page) write a C++ program to calculate its moment of
inertia about the axis x = y = 0.

Figure 5: A crescent.

Note that both of the above tasks would be very difficult to do using non-Monte Carlo
numerical integrations (though the first one is straightforward to do analytically).

12.7 The importance of flat distributions

It should be fairly obvious that if the distribution we are integrating is perfectly flat,
then 〈f(x)〉 = f(x) for all x and all these integration methods give a perfect result
with smallest N . Of course, in this case one would not be integrating it numerically!
However, it is generally true that these methods all work better if the integrand is
reasonably flat, and work poorly if the integrand has a strong dependence on the pa-
rameter you are integrating over. So, if we can manipulate our integration to make

32 12 Numerical Integration

it reasonably flat before numerical integration, we will need far fewer points for the
integration to reach the desired accuracy.

So how do we do this? Consider integrating a function f(x), and suppose we know
of a function g(x) which we know how to integrate analytically which is approximately
the same as f(x) over the range of x we are integrating over. Then,∫

f(x)dx =

∫
f(x)

g(x)
dy, (20)

where

dy = g(x)dx ⇒ y =

∫
g(x)dx. (21)

Since we know how to integrate g(x) we can work out y analytically. A numerical
integration over y will be more efficient than an integration over x since f(x)/g(x) is
reasonably flat.

Let’s have a concrete example. Consider the integration,

I =

∫ 10

−10

1 + 1
4

cosx

1 + x2
dx, (22)

As shown in figure 6. Unaltered, this would be difficult to integrate numerically since
our Monte Carlo will very often choose values of x that contribute little to the mean.

Figure 6: The function f(x) =
(
1 + 1

4
cosx

)
/(1 + x2).

However, the function g(x) = 1/(1 + x2) is easy to integrate,∫
1

a2 + x2
dx = tan−1 x+ constant, (23)

12.7 The importance of flat distributions 33

so we can change variables to y = tan−1 x and write,

I =

∫ 10

−10

1 + 1
4

cosx

1 + x2
dx =

∫ tan−1 10

− tan−1 10

[
1 +

1

4
cos (tan y)

]
dy. (24)

This is now quite flat, so the error is greatly reduced.

I Task: Calculate the integral Eq.(22) using a Monte Carlo integration, first using x
as your integration variable and then y = tan−1 x. In both cases, quantify the Monte
Carlo error (as in Eq.(17)) and compare between the two methods.

12.7.1 Interlude: Monte Carlo Methods in Particle Physics

Flat distributions are massively important if we want to have a quick an accurate Monte
Carlo integration. In particle physics, we often deal with virtual intermediate particles
that only live for a very short time. If we imagine a collection of particles, their number
will decay exponentially; in Quantum Mechanics we can then speak (a bit inaccurately)
of an exponential decay of a particle’s wave function with time: ∼ exp(t/τ), where τ is
the characteristic lifetime of the particle. We prepare particles at colliders with a given
momentum rather than at a given space so it’s better to write everything in Fourier
space, where the exponential decay reads

∼ 1

E2
cm −m2

i + imiΓi

where Γi is the inverse lifetime. How does this function look as function of the centre
of mass energy Ecm and Γi/mi, and why is this distribution complicated to sample?

I Task: Let’s have a look at how particle physicists work with Monte Carlo programs
in this context.

Download MadGraph4 from

http://www.christophenglert.co.uk/MG5.tar.gz

Unpack it and run it via ./bin/mg5. We want to simulate electron-positron production
at the Large Hadron Collider. To do this, type the following commands

• Specify the process: generate p p > e+ e-

• Set up the numerical code: output testrun

• Run the code: launch testrun. Type 0 twice to start the program.

The webbrowser should open giving you details about the simulation (alternatively
you can navigate to ./MG5_aMC_v2_1_2/testrun/index.html. When the run is fin-
ished click on LHE to look up the directory of the results. Alternatively you can cd to
MG5_aMC_v2_1_2/testrun/Events/run_01. The file we are looking for is

4MadGraph is widely used in the High Energy Physics Community. The authors of the code
provide details here: http://arxiv.org/abs/arXiv:1106.052.

34 12 Numerical Integration

unweighted_events.lhe.gz

Let’s analyse the data. Get the analysis code from

http://www.christophenglert.co.uk/Analysis_labs.tar.gz

cd to the unpacked directory and type make to build the analysis code and copy
the data file into this directory and unzip it with gunzip. Launch the analysis with
./plot_events and type in the name of the unzipped data file. The code produces a
file plots.top that is ascii. Look for “mij” and plot the histogram (the three columns
quoted under the header). This is a histogram that gives you the invariant mass of the
electron positron pair. Have a look at the process information in the browser. Where
does that sharp peak come from?

12.8 Monte Carlo as a physical simulation

So far, Monte Carlo’s have been just a tool for performing integrations. However, as
described in section 12.6 they can be used to simulate experiments with some random
element.

To understand this, let’s again consider an example: Buffon’s Needle. In 1777 the
Comte de Buffon posed the following problem: imagine a board with lines drawn on
it at equal spacing t, upon which a needle of length l is randomly thrown; what is the
probability of the needle landing across one of the lines. See Figure 7 for a pictorial
representation.

Analytically, this is quite straightforward. If x is the distance of the centre of the
needle to the closest line, and θ is the angle between the needle and the lines, then it
will cross the line if,

x ≤ l

2
sin θ. (25)

Since x is random between 0 < x < t
2

and the angle θ is random between 0 < θ < π/2
then the probability of the needle landing on a line is,∫ π/2

0

dθ

∫ (l/2) sin θ

0

dx∫ π/2

0

dθ

∫ t/2

0

dx

=

∫ π/2

0

dθ
l

2
sin θ∫ π/2

0

dθ
t

2

=
l/2

πt/4
=

2l

πt
. (26)

So one could, in principle, determine the value of π by throwing lots of needles on
such a board: if you throw N needles and n land on a line, then,

π ≈ 2lN

nt
. (27)

This experiment has been done many times, most famously in 1901 by an Italian math-
ematician called Lazzerini, who found π = 3.1415929 after 3408 throws .

We can simulate this experiment on a computer by generating random numbers and
using them give us values of x and θ for each needle thrown. For each x and θ choice

12.9 Final task 35

Figure 7: Buffon’s Needle problem. A needle of length l is randomly thrown onto a
board with lines drawn on it at equal spacing t. What is the probability of the needle
landing on one of the lines?

we then decide if the needle crosses a line (i.e. if x ≤ (l/2) sin θ) and add one to n if it
does. In essence, we are using a Monte Carlo to do the integration in Eq.(26), but due
to the probabilistic nature of the experiment, this is also a simulation.

NB: You should realise that this is not an actual calculation of π since we need to
input π into our program in order to generate a random number between 0 and π/2 (for
θ). This is only a simulation of an experiment. (Can you think how we might modify
it to actually calculate π with no π inputted?)

12.9 Final task

This prompts us to the final task of TP3:

I Task: Write a Monte Carlo to simulate Buffon’s experiment and quantify your
Monte Carlo error on the measurement. Write a report on this task. Your report
should be written using LATEX (remember you made a report template when we first
learned about LATEX). Your report should include an abstract, and an introduction that
explains why the task is interesting and provides a summary of the “project”. In the
main part of your report you should explain how you solved the problem, including the
algorithm (without detailed C++ code) and present your results. Remember to make an
estimate of your errors! Finally you should draw some conclusions and summarise your
work, making suggestions on how your calculation could be improved (or not!). Your

36 13 Feedback

C++ code and outputs should be reserved for an appendix. If you use anybody else’s
algorithm, results, formulae or information, be sure to reference them. Remember that
the report should comprehensible to somebody who has not participated in TP3 - just
referencing these course notes is not enough.

The report should be handed in via Moodle by the end of week 12 for
assessment.

13 Feedback

I Task: An optional task is to provide feedback on the course. Please send an email
to christoph.englert@glasgow.ac.uk detailing your thoughts. Please split this into
three sections:

• Things you liked about the course. Let us know what parts you found useful.
Do you feel you have learned new skills from the course? Do you understand the
motivations and role of scientific computing? Was it fun?!

• Things you didn’t like about the course. Was the course too easy or too hard?
Did you feel under too much pressure? Was the course too long? Where the tasks
unhelpful? Was the course poorly motivated and/or explained?

• Things you would change. If you were teaching this course yourself, what would
you change? How would you teach this course differently?

